Appendix A Toxicity Profiles

POLYCHLORINATED BIPHENYLS (PCBs)

General Background Information

The thermal stability, nonflammability, and dielectric capability of PCBs resulted in their use in electrical capacitors and transformers (NIOSH, 1986). The manufacturing, processing, distribution in commerce, and use of PCBs after January 1, 1978 was prohibited under Section 6(e) of the Toxic Substances Control Act. PCBs can be released to the environment during fires involving electrical equipment containing these compounds. PCBs are strongly adsorbed on solid surfaces, including glass and metal surfaces in laboratory apparatus, and onto soils, sediments, and particulates in the environment.

Pharmacokinetics

Gastrointestinal absorption of most PCB isomers is large. PCBs can also be absorbed by the inhalation and dermal routes but limited data are available (see section on Relative Absorption Factors). Distribution of PCBs follows a biphasic pattern. Initially, PCBs distribute to liver and muscle tissue. They are then redistributed to the fat, skin, and other fat-containing organs (ATSDR, 1989). PCBs are poorly metabolized in humans with major metabolites being 3- or 4-hydroxy compounds. Metabolism may proceed through formation of arene oxide intermediates (U.S. EPA, 1988). The slow metabolism of PCB congeners to more polar compounds is responsible for long biological half-lives of PCBs. Excretion occurs primarily through the feces (Goto et al., 1974).

Human Toxicological Profile

Dermatologic signs are the most persistent indicator of PCB toxicity. Skin manifestations have been observed also in newborn infants of mothers exposed to high levels of PCBs and related compounds. Cases of severe chloracne were reported in a work environment in which PCB air levels were found to be between 5.2 and 6.8 mg/m³. The workers developing chloracne had been exposed for 2 to 4 years. Other analyses revealed worker complaints of dry sore throat, skin rash, gastrointestinal disturbances, eye irritation, and headache at work area concentrations of 0.013 to 0.15 mg PCB/m³. Higher blood PCB levels are associated with higher serum triglyceride and/or cholesterol levels, as well as high blood pressure. Air PCB concentrations as low as 0.1 mg/m³ can produce toxic effects, and exposure to levels producing no overt toxicity can affect liver function. Recovery after termination of exposure occurs but is slow and depends upon the amount of PCBs stored in adipose tissue (Clayton and Clayton, 1981). Human exposures to PCBs resulting in toxic effects have almost all resulted from the ingestion of rice oil contaminated with "Kanechlor 400" in Japan (resulting in Yusho or rice oil disease) or from industrial exposure. Clinical symptoms of poisoning included acne-like skin eruptions (chloracne), eyelid edema, conjunctival discharge, skin and nail pigmentation, and hyperkeratosis. Yusho patients are estimated to have ingested approximately 0.07 mg/kg/day for at least 50 days. The rice oil was found to be contaminated with polychlorinated dibenzofuran, which is believed to have played a significant role in the observed toxicity (Bandiera et al., 1984; Kashimoto et al., 1981). As suggested by laboratory experiments with Rhesus monkeys, fetal and newborn primates, including humans, may be particularly susceptible to PCBs. Fein et al. (1984) studied the effects of low-level chronic exposure to PCBs in pregnant women and their newborn offspring from consumption of Lake Michigan fish. Low levels of PCBs were reported to cause decreases in birth weight, head circumference, and gestational age of the newborn. PCBs were apparently transmitted to the fetus across the placenta and to the newborn through breast milk. Behavioral deficiencies, including immaturity of reflexes and depressed responsiveness, were reportedly observed in infants exposed to PCBs. Jacobson et al. (1984) correlated maternal consumption of PCB-contaminated fish with behavioral abnormalities in newborns, including autonomic immaturity and depressed responsiveness. The authors likened these responses to similar effects in laboratory animals.

Mammalian Toxicological Profile

PCBs are only slightly toxic in acute exposures to laboratory animals. LD_{50} values for rats, rabbits, and mice are generally in the range of 1 to 10 g/kg body weight (U.S. EPA, 1980). Nonhuman primates seem to be particularly sensitive to PCB-induced reproductive effects (U.S. EPA, 1980). Dietary exposures of cynomolgus and Rhesus monkeys to 200 ug of Aroclor 1254/kg-day, 5 days per week for 28 months, resulted in symptoms of enlarged tarsal glands, conjunctivitis, loss of eyelashes, progressive detachment of fingernails, exuberant nail beds, hyperplasia of biliary ducts, hepatocellular enlargement and necrosis, and normocytic anemia (Tryphonos et al., 1986a; Tryphonos et al., 1986b). Effects were less pronounced in cynomolgus monkeys.

Monkeys that were fed diets containing 1.0 ppm of Aroclor 1016 for approximately 7 months prior to mating and during pregnancy delivered infants with reduced birth weights (Barsotti and Van Miller, 1984). Fetal mortality occurred at >2.5 ppm (0.1 mg/kg/day) of Aroclor 1248 in the diet in other studies with monkeys (Allen and Barsotti, 1976; Barsotti et al., 1976; Allen et al., 1980). In rats, a dose of 269 ppm of Aroclor 1254 given continuously in the food over the duration of pregnancy caused a decrease in the number of impregnated rats that delivered litters. Pups that were born were underweight, and most died within 7 days of birth. Two lower doses (26 and 2.5 ppm) caused altered neurobehavioral and somatic ontogeny (Overmann et al., 1987). PCBs have been shown to be teratogenic in mice. Cleft palate, dilated kidney pelvis, and thymus hypoplasia were observed. The ED50 (effective dose for 50% of the animals) for formation of cleft palate was a single 100 mg/kg dose, with peak sensitivity occurring on the twelfth day of gestation (d'Argy et al., 1987).

Immunological effects (decreased IgM, IgG induction) were noted in monkeys following a 27 month exposure at a dose of 0.005 mg/kg/day (Tryphonos et al., 1989).

Genotoxicity

Most genotoxicity assays of PCBs have been negative. The majority of microbial assays of PCB mixtures and various congeners show no evidence of mutagenic effects (U.S. EPA, 1980). The carcinogenic effects of PCBs have been studied in rats and mice. In a study conducted by Kimbrough et al. (1975) rats were exposed via the diet to 100 ppm Aroclor 1260 for 21 months. Hepatocellular carcinomas were observed in 26 of the 184 treated rats but only in one of the 173 controls. Neoplastic nodules were not found in controls but occurred in 144/184 of treated rats. The National Cancer Institute (NCI, 1978) reported a high incidence of hepatocellular proliferative lesions in male and female Fischer 344 rats fed three dose levels of Aroclor 1254 for 104-105 weeks, but, in part due to the small number of animals tested, carcinogenicity was not statistically demonstrable. Norback and Weltman (1985) fed a diet containing relatively high concentrations Aroclor 1260 (100 ppm for 16 months followed by 50 ppm for an additional 8 months) to Sprague-Dawley rats. In the PCB-exposed group, neoplastic nodules were observed at 12 months followed by trabecular carcinoma at 15 months and adenocarcinoma at 24 months (52/93). In the control rats, the incidence of hepatocellular neoplasms was low (1/81). Metastases to distant organs was not observed and mortality in the PCB exposed animals was not increased. The incidence of these slow-growing hepatocellular neoplasms was strikingly higher in female rats than in male rats.

PCBs (Clophen C) have also been shown to be cocarcinogenic. When PCBs were mixed with diethylnitrosamine (DENA), twice as many tumors were observed as were observed in animals treated with DENA alone (Brunn, 1987).

Based on the positive evidence for carcinogenicity of Aroclor 1254, Aroclor 1260, Kaneclor 500, and Clophen A-30 and A-60 in animals, along with adequate evidence in humans, the U.S. EPA has placed these PCBs in categroy B2 - probable human carcinogen (U.S. EPA, 1988).

- Agency for Toxic Substances and Disease Registry (ATSDR) (1989) <u>Toxicological profile for selected PCBs</u>. U.S. Public Health Service.
- Allen, J.R., Barsotti, D.A. and Carstens, L.A. (1980) *Residual effects of polychlorinated biphenyls on adult nonhuman primates and their offspring.* **J. Toxicol. Environ. Health** 6:55-66.
- Allen, J.R. and Barsotti, D.A. (1976) *The effects of transplacental and mammary movement of the PCBs on infant rhesus monkeys.* **Toxicology** 6:331.
- Bandiera, S., Farrell, K., Mason, G., Kelley, M., Romkes. M., Bannister, R. and Safe, S. (1984) *Comparative toxicities of the polychlorinated dibenzofuran (PCDG) and biphenyl (PCB) mixtures which persist in Yusho victims*. **Chemosphere** 13:507-512.
- Barsotti, D.A., Marlar, R.J. and Allen, J.R. (1976) *Reproduction dysfunction in Rhesus monkeys exposed to low levels of polychlorinated biphenyls (Aroclor 1248).* **Food Cosmet. Toxicol.** 14:99.
- Barsotti, D.A. and Van Miller, J.P. (1984) *Accumulation of a commercial polychlorinated biphenyl mixture* (Aroclor 1016) in adult rhesus monkeys and their nursing infants. **Toxicology** 30:31-44.
- Brunn, H., Schmidt, E., Reinacher, M., Manz, D. and Eigenbrodt, E. (1987) *Histology and histochemistry of the liver of chickens after DENA-induced hepatocarcinogenesis and ingestion of low chlorinated biphenyls.* **Arch. Toxicol.** 60:337-342.
- Clayton, F.D. and Clayton, F.E. (eds.). (1981) <u>Patty's Industrial Hygiene and Toxicology</u>. Volume 2B, Toxicology, Third Revised Edition. John Wiley and Sons, New York, NY. pp. 3645-3669.
- d'Argy, R., Dencker, L., Klasson-Wehler, E., Bergman, A. Darnerud, P.O. and Brandt, I. (1987) 3,3',4,4'-Tetrachlorobiphenyl in pregnant mice: Embryotoxicity, teratogenicity, and toxic effects on the cultured embryonic thymus. **Pharmacol. Toxicol.** 61:53-57.
- Fein, G., Jacobson, J.L., Jacobson, S.W. and Schwarz, P. (1984) <u>Intrauterine exposure of humans to PCBs</u> (<u>Polychlorinated Biphenyls</u>): <u>Newborn effects</u>. EPA-600/3-84-060.
- Goto, M., Sugiura, K., Hattori, M., Miyagawa, T. and Okamura, M. (1974) *Metabolism of 2,3-dichlorobiphenyl-* and 2,4,6-trichlorobiphenyl-¹⁴C in the rat. **Chemosphere** 5:227-232.
- Jacobson, J.L., Schwartz, P.M., Fein, G.G. and Dowler, J.K. (1984) *Prenatal exposure to an environmental toxin; A test of the multiple effects model.* **Dev. Psychol.** 20:523-532.
- International Agency for Research on Cancer (IARC) (1982) <u>Monographs on the evaluation of the carcinogenic risk of chemicals to humans</u>. <u>Polychlorinated biphenyls and polybrominated biphenyls</u>. Vol 18. Lyon, France.
- Kashimoto, T., Tung, T-C., and Ohi, G. (1981) *Role of polychlorinated dibenzofuran in Yusho (PCB poisoning)*. **Arch. Environ. Health** 36:321-326.
- Kimbrough, R.D., Squire, R.A., Linder, R.E., Strandburg, J.D., Montaili, R.D. and Burse, V.W. (1975)
 Prepared by PCB Risk Assessment Work Force. In Appendix A, U.S. EPA, 1981. <u>Draft Environmental Impact Statement for the Hudson River PCB Demonstration Reclamation Project</u>.
- National Cancer Institute (NCI) (1978) Bioassay of Aroclor 1254 for Possible Carcinogenicity.
- National Institute for Occupational Safety and Health (NIOSH) (1986) *Polychlorinated biphenyls (PCBs):*Potential health hazards from electrical equipment fires or failures. Current Intelligence Bulletin 45.

- Norback, D.H. and Weltman, R.H. (1985) *Polychlorinated biphenyl induction of hepatocellular carcinoma in the Sprague-Dawley rat.* **Environ. Health Perspect**. 60:97-105.
- Overmann, S.R., Kostas, J., Wilson, L.R., Shain, W. and Bush, B. (1987) *Neurobehavioral and somatic effects of perinatal PCB exposure in rats.* **Environ. Res.** 44:56-70.
- Tryphonos, L., Charbonneau, S., Tryphonas, H., Zawidzka, Z., Mes, J., Wong, M. and Arnold, D.L. (1986a) Comparative aspects of Aroclor 1254 toxicity in adult cynomolgus and Rhesus monkeys: A pilot study. **Arch. Environ. Contam. Toxicol.** 15:159-169.
- Tryphonos, L., Arnold, D.L., Zawidzka, Z., Mes, J., Charbonneau, S. and Wong, J. (1986b) *A pilot study on adult Rhesus monkeys (M. mulatta) treated with Aroclor 1254 for two years.* **Toxicol. Pathol.** 14:1-10.
- Tryphonos, L., at al. (1989) *Immunotoxicity Studies of PCB (Arochlor 1254) in the Adult Rhesus (Macca mulatta) Monkey -- Preliminary Report.* **Int. J. Immunopharmacol.** 11:199-206.
- U.S. Environmental Protection Agency (U.S. EPA) (1980) <u>Ambient water quality criteria for polychlorinated biphenyls</u>. EPA-440/5-80-068. Office of Water Regulations and Standards, Washington, DC.
- U.S. Environmental Protection Agency (U.S. EPA) (1988) <u>Drinking water criteria document for polychlorinated biphenyls (PCBs)</u>. EACO-CIN-414.

ACENAPHTHENE

General Background Information

Acenaphthene is a member of the polycyclic aromatic hydrocarbons (PAH). PAHs are a class of non-polar compounds that contain two or more aromatic rings. They are ubiquitous in nature and are both naturally occurring and man-made. The database for acenaphthene is very limited.

Pharmacokinetics

No data were found regarding the pharmacokinetics of acenaphthene.

Human Toxicological Profile

No data were found regarding the human toxicology of acenaphthene.

Mammalian Toxicological Profile

Adverse effects on the lungs, glands, and blood were observed in rats following aerosol administration of 12 mg/m^3 acenaphthene for 5 months (U.S. EPA, 1981).

Genotoxicity

Mutagenicity tests for acenaphthene were negative (U.S. EPA, 1981). Carcinogenicity tests were negative (IARC, 1983).

REFERENCES

International Agency for Research on Cancer (IARC) (1983) *Monograph on the evaluation of carcinogenic risk of chemicals to man: polynuclear aromatic hydrocarbons*, 32:33-43,

U.S. Environmental Protection Agency (U.S. EPA) (1981) <u>An exposure and risk assessment for acenaphthalene</u>. U.S. EPA Contract No. 68-01-6017. Office of Water Regulations and Standards, Washington, D.C.

ANTHRACENE

General Background Information

Anthracene is a polycyclic aromatic hydrocarbon (PAH). PAHs are a class of compounds which are non-polar and contain two or more aromatic rings. They are ubiquitous in nature and are both naturally occurring and man-made. As a PAH, anthracene is found in tobacco smoke, certain foods, and the emissions from industrial or natural burning.

Pharmacokinetics

Little data were found regarding the pharmacokinetics of anthracene. The intestinal absorption of anthracene is less dependent on the presence of bile in the stomach than is the absorption of larger PAHs such as benzo(a)pyrene (Rahman et al, 1986).

Human Toxicological Profile

Anthracene is a skin irritant and allergen (Sax, 1984). Humans exposed to anthracene in an occupational setting may demonstrate skin disorders (Clement, 1985). Anthracene has been associated with gastrointestinal tract toxicity in humans (Badiali et al, 1985). However, the usefulness of this study is limited due to confounding factors. Hematopoietic toxicity has also been observed in cancer patients who have been treated with anthracene-containing chemotherapeutics (Falkson et al, 1985). No control groups and concomitant exposure to other ingredients in the therapeutic agents prevents any definitive conclusions.

Mammalian Toxicological Profile

A subchronic study where anthracene was administered to mice by gavage for at least 90 days found no treatment-related effects at doses up to 1000 mg/kg-day (USEPA, 1989). The data on the carcinogenicity of anthracene are considered inadequate by EPA (IRIS, 1991).

Genotoxicity

Tests for DNA damage, mutation, chromosome effects and cell transformation in a variety of eukaryotic cell preparations have shown negative results. The majority of tests using anthracene in prokaryotes are negative, but positive results are reported in one or two tests (ATSDR, 1990; IRIS, 1991).

REFERENCES

Agency for Toxic Substances and Disease Registry (ATSDR) (1990) Toxicological summary for polycyclic aromatic hydrocarbons. U.S. Public Health Service.

Badiali, D. et al. (1985) *Melanosis of the rectum in patients with constant constipation*. **Dis Colon Rectum** 28:241-245.

Clement (1985) Chemical, physical and biological properties of compounds present at hazardous waste sites.

Falkson, G. Klein, B., Falkson, H. (1985) *Hematological toxicity: experience with antracyclines adn anthracenes.* Exp. Hematol 13:64-71.

Integrated Risk Information System (IRIS) (1991) U.S. Environmental Protection Agency

International Agency for Research on Cancer (IARC) (1983) *Monograph on the evaluation of carcinogenic risk of chemicals to man, anthracene.* 32:433-440.

Sax, N.I. (1984) Dangerous Properties of Industrial Materials. 6th edition. Van Nostrand Reinhold Company, N.Y.

BENZO[a]ANTHRACENE

General Background Information

Benzo[a]anthracene (BaA) is a member of the polycyclic aromatic hydrocarbons (PAH). PAHs are a class of non-polar compounds that contain two or more aromatic rings. They are ubiquitous in nature and are both naturally occurring and man-made. The overall database for benzo[a]anthracene is limited. Human exposures to BaA can come from the oral, inhalation or dermal routes. BaA is produced when gasoline or other organic material is burned. It is also found in cigarette smoke and cooked food. People most at risk from exposure to BaA are those in the coal tar and asphalt production industries, cooking plants, coal gasification plants, smoke houses and industrial plants that burn wood, trash, coal or oil.

Pharmacokinetics

BaA is absorbed by the dermal and oral routes. There is no information on absorption by inhalation. Biotransformation to reactive intermediates is necessary for toxicity (ATSDR, 1990). BaA accumulates in adipose tissue. The metabolism of BaA is similar to the metabolism of benzo[a]pyrene (Cooper et al., 1983). In brief, the aromatic ring is oxidized by arene oxides to form reactive intermediates. The reactive intermediates are subsequently hydrolyzed to diols (Sims and Grover, 1974). The diols are conjugated with glutathione and excreted.

Human Toxicological Profile

There are no reports directly correlating human exposure to BaA with the development of excess tumors.

Mammalian Toxicological Profile

The only toxicity endpoint that has been adequately studied for BaA is dermal carcinogenicity. There is some evidence that benz[a]anthracene is carcinogenic in laboratory animals by the oral route (Klein, 1963; Bock and King, 1959) and also by subcutaneous injection (IARC, 1973). BaA has been shown to cause skin tumors after dermal application (Bingham and Falk, 1969). Tumorigenicity of the diol epoxide metabolite has been shown (Levin et al., 1978) as well as the mutagenicity of the diol epoxide (Wood et al., 1977).

Genotoxicity

The metabolism of BaA is an essential event in producing genotoxic effects in both *in vitro* and *in vivo* biological test systems (ATSDR, 1990). The intermediates formed by BaA metabolism are reactive electrophiles which are capable of interacting with DNA.

REFERENCES

Agency for Toxic Substances and Disease Registry (ATSDR) (1990) <u>Toxicological summary for benzo[a]anthracene</u>. U.S. Public Health Service.

Bingham, E. and Falk, H.L. (1969) *The modifying effect of carcinogens on the threshold response*. **Arch. Environ. Health** 19:779-783.

Bock, F.G. and King, D.W. (1959) A study of the sensitivity of the mouse forestomach toward certain polycyclic hydrocarbons. J. Natl. Cancer Inst. 23:833.

Cooper, C.S. Grover, P.L., and Sims, P. (1983). *The metabolism and activation of benzo(a)pyrene*. In: Bridges, J.W. and L.F. Chase, eds. <u>Progress in Drug Metabolism</u>. Vol. 7. John Wiley and Sons, New York, pp. 295-395.

Klein, M. (1963) Susceptibility of strain B6AF/J hybrid infant mice to tumorigenesis with 1,2-benzanthracene, deoxycholic acid, and 3-methylcholanthrene. Cancer Res. 23:1701-1707.

Levin, W., Thakker, D.R., Wood, A.W. et al. (1978) *Evidence that benzo(a)anthracene 3,4-diol-1,2-epoxide is an ultimate carcinogen on mouse skin.* **Cancer Res.** 38:1705-1710.

Sanders, C.L., Skinner, C. and Gelman, R.A. (1986) *Percutaneous absorption of 7,10* ¹⁴C-benzo(a)pyrene and 7,12 ¹⁴C-dimethylbenzo(a)pyrene in mice. **JEPTO** 2:25-34.

IARC (Internation Agency for Research on Cancer) (1973) *Certain Polycyclic Aromatic Hydrocarbons and Heterocyclic Compounds.* **IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Man. Volume 3.** IARC, Lyon, France, pp. 46-68.

Sims, P. and Grover, P.L. (1974) *Epoxides in polycyclic aromatic hydrocarbon metabolism and carcinogenesis*. **Adv. Cancer Res.** 20:165-274.

Wood, A.W., Chang, R.L., Levin, W., et al. (1977) *Mutagenicity and cytotoxicity of benz(a)anthracene diol epoxide and tetrahydroepoxides. Exceptional activity of the bay region 1,2-epoxides.* **Proc. Natl. Acad. Sci. USA** 74:2746-2750.

BENZO[b]FLUORANTHENE

General Background Information

Benzo[b]fluoranthene (BbF) is a member of the class of compounds referred to as polycyclic aromatic hydrocarbons (PAHs). PAHs contain two or more aromatic rings. PAHs are ubiquitous in nature and are both naturally occurring and man-made. Exposure to BbF can come from air, water, or soil. As a PAH, BbF is present in the emissions from industrial plants that produce coal tar, cooking plants, asphalt production plants, and home heating with wood and coal. BbF is also present in charcoal-broiled foods and cigarette smoke (ATSDR, 1990).

Pharmacokinetics

No data on the absorption, distribution or excretion of BbF were identified. BbF is metabolized under *in vitro* incubation conditions to phenol and dihydrodiol metabolites (Amin et al., 1982). The general metabolic pathways elucidated for benzo(a)pyrene are also active on BbF (Cooper et al., 1983; Levin et al., 1982; Grover et al., 1986). The reactive metabolites associated with the tumorigenic effects of BbF may not be the diol epoxides (Amin et al., 1982; Amin et al., 1985). As for the other PAHs, the material excreted is expected to consist primarily of dihydrodiol and phenol conjugates (Grover et al., 1986).

Human Toxicological Profile

The database for human toxicity is very limited. There are no studies correlating exposure to BbF and cancer or systemic toxicity. The only data implicating BbF as a carcinogen come from carcinogenicity studies using a mixture of PAHs.

Mammalian Toxicological Profile

The database on the toxicity of BbF is limited. Intratracheal administration of BbF to rats resulted in an increase in respiratory tract tumors (Deutsch-Wenzel et al., 1983). BbF has caused skin tumors in mice following dermal application (Wynder and Hoffman, 1959). The skin tumor initiating ability of BbF has been demonstrated in mice using a standard initiation/promotion protocol with either croton oil or phorbol myristate acetate as a tumor promotor (Amin et al., 1985; LaVoie et al., 1979, 1982).

Genotoxicity

The genotoxicity of BbF has been shown equivocally in three *in vitro* studies. BbF has been shown to be mutagenic in *Salmonella typhimurium* in the presence of an exogenous rat-liver preparation (LaVoie et al., 1979). Mutagenic activity has been reported in another similar study (Hermann, 1981). Negative results were reported by Mossanda (1979). The results cannot support an unequivocal determination regarding the genotoxicity of BbF at this time.

- Agency for Toxic Substance and Disease Registry (ATSDR) (1990) Toxicological profile for benzo(b)fluoranthene. U.S. Public Health Service.
- Amin, S., LaVoie, E.J. and Hecht, S.S. (1982) *Identification of metabolites of benzo(a)fluoranthene*. **Carcinogenesis** 3:171-174.
- Amin, S., Huie, K., Hussaur, N., Geddie, J.E. and Hecht, S.S. (1985) *Mutagenicity and tumor initiating activity of methylated benzo(b)fluoranthenes.* **Carcinogenesis** 6:1023-1025.

- Cooper, C.S., Grover, P.L. and Sims, P. (1983) *The metabolism and activation of benzo(a)pyrene*. In: Bridges, J.W., Chase, L.F. eds. <u>Progress in drug metabolism</u>, Vol.7. John Wiley and Sons, New York, pps. 295-395.
- Deutsch-Wenzel, R.P., Brune, H., Grimmer, O., Dettbarn, G. and Misfield, J. (1983) *Experimental studies in rat lungs on the carcinogenicity and dose-response relationships of eight frequently occurring environmental polycyclic aromatic hydrocarbons.* **J. Natl.Cancer Inst.** 71:539-544.
- Grover, P.L. (1986) *Pathways involved in the metabolism and activation of polycyclic aromatic hydrocarbons.* **Xenobiotica.** 16:915-931.
- Hermann, M. (1981) Synergistic effects of individual polycyclic aromatic hydrocarbons and the mutagenicity of their mixtures. **Mutat. Res.** 90:399-409.
- LaVoie, E.J., Amin, S., Hecht, S.S., Furuya, K. and Hoffmann, D. (1979) *On the metabolic activation of the environmental carcinogens benzo(j)fluoranthene and benzo(b)fluranthene*. **Proc. Am. Assoc. Ca.** 20:81.
- LaVoie, E.J., Amin, S., Hecht, S.S., Furuya, K. and Hoffmann, D. (1982) *Tumour initiating activity of dihydrodiols of benzo(b)fluoranthene, benzo(j)fluoranthene, and benzo(k)fluoranthene.*Carcinogenesis 3:49-52.
- Levin, W., Wood, A., Chang, R.L. et al. (1982) *Oxidative metabolism of polycyclic aromatic hydrocarbons to ultimate carcinogens.* **Drug Metab. Rev.** 13:555-580.
- Mossanda, K., Poncelet, F., Fouassin, A. and Mercier, M. (1979) *Detection of mutagenic polycyclic aromatic hydrocarbons in African smoked fish.* **Food Cosmet. Toxicol.** 17:141-143.
- Wynder, E.L. and Hoffmann, D. (1959) The carcinogenicity of benzofluoranthenes. Cancer 12:1194-1199.

BENZO[k]FLUORANTHENE

General Background Information

Benzo[k]fluoranthene (BkF) is a member of the class of compounds referred to as polycyclic aromatic hydrocarbons (PAHs). PAHs contain two or more aromatic rings. PAHs are ubiquitous in nature and are both naturally occurring and man-made. Exposure to BkF can come from air, water, or soil. As a PAH, BkF is present in the emissions from industrial plants that produce coal tar, cooking plants, asphalt production plants, and home heating with wood and coal. BkF is also present in charcoal-broiled foods and cigarette smoke (ATSDR, 1990).

Pharmacokinetics

No data on the absorption, distribution or excretion of BkF were identified. BkF is believed to be metabolized to phenol and dihydrodiol metabolites (ATSDR, 1990). The general metabolic pathways elucidated for benzo[a]pyrene are believed to be active on BkF. As for the other PAHs, the material excreted is expected to consist primarily of dihydrodiol and phenol conjugates (Levin et al., 1982; Cooper et al., 1983; Grover et al., 1986).

Human Toxicological Profile

The database for human toxicity is very limited. There are no studies correlating exposure to BkF and cancer or systemic toxicity. The only data implicating BkF as a carcinogen come from carcinogenicity studies using a mixture of PAHs.

Mammalian Toxicological Profile

The database on the toxicity of BkF is limited. The skin tumor initiating ability of BkF has been demonstrated in mice using a standard initiation/promotion protocol with either croton resin or phorbol myristate acetate as tumor promotors (Van Duuren et al., 1966; LaVoie et al., 1982). Chronic dermal application of benzo[k]fluoranthene to mice resulted in no skin tumors, suggesting that BkF alone is not a complete carcinogen (Wynder and Hoffman, 1959).

Genotoxicity

The genotoxicity of BkF has not been documented in *in vitro* studies. In vivo, a single topical application of BkF was reported to bind to DNA in CD-1 mouse skin (Weyland et al., 1987). Covalent binding of chemicals to DNA can result in strand breaks and DNA damage, ultimately leading to mutations (ATSDR, 1990).

- Agency for Toxic Substance and Disease Registry (ATSDR) (1990) <u>Toxicological profile for polycyclic aromatic hydrocarbons</u>. U.S. Public Health Service.
- Cooper, C.S., Grover, P.L. and Sims, P. (1983) *The metabolism and activation of benzo(a)pyrene*. In: Bridges, J.W., Chase, L.F. eds. <u>Progress in drug metabolism</u>, Vol.7. John Wiley and Sons, New York, pp. 295-395.
- Grover, P.L. (1986) *Pathways involved in the metabolism and activation of polycyclic aromatic hydrocarbons.* **Xenobiotica.** 16:915-931.

- LaVoie, E.J., Amin, S. and Hecht, S.S. (1982) *Tumor initiating activity of dihydrodiols of benzo(b)fluoranthene, benzo(j)fluoranthene and benzo(k)fluoranthene.* **Carcinogenesis** 3:49-52.
- Levin, W., Wood, A., Chang, R.L. et al. (1982) *Oxidative metabolism of polycyclic aromatic hydrocarbons to ultimate carcinogens.* **Drug Metab. Rev.** 13:555-580.
- Van Duuren, B.L., Sivak, A. and Segal, A. (1966) *The tumor producing agents of tobacco leaf and tobacco smoke condensate*. **JNCI** 37:519.
- Weyand, E.H., Rice, J.E., and LaVoie, E.J. (1987) *32P-postlabeling analysis of DNA adducts from non-alterant PAH using thin-layer and high performance liquid chromatography.* **Cancer Lett** 37:257-266.
- Wynder, E.L. and Hoffmann, D. (1959) The carcinogenicity of benzofluoranthenes. Cancer 12:1194-1199.

BENZO[g,h,i]PERYLENE

General Background

Benzo[g,h,i]perylene is a member of the polyaromatic hydrocarbons (PAH). PAHs constitute a class of non-polar compounds that contain two or more aromatic rings. They are ubiquitous in nature and are both naturally occurring and man-made. The data regarding benzo[g,h,i]perylene are limited. As a PAH, it is found in food (charcoal broiled meats), vegetables, tobacco smoke and soot (U.S. EPA, 1980). Exposure occurs by inhalation, ingestion and by dermal contact.

Pharmacokinetics

No data were found regarding the pharmacokinetics of benzo[g,h,i]perylene.

Human Toxicological Profile

No data were found regarding the human toxicology of benzo[g,h,i]perylene.

Mammalian Toxicological Profile

No data were found regarding the mammalian toxicity of benzo[g,h,i]perylene.

Genotoxicity

No data were found regarding the genotoxicity of benzo[g,h,i]perylene.

REFERENCES

U.S. Environmental Protection Agency (U.S. EPA). (1980) An exposure risk assessment of polycyclic aromatic hydrocarbons (benzo(g,h,i)perylene). U.S. EPA Contract 68-01-6017. Office of Water Regulations and Standards. Washington, D.C.

BENZO[a]PYRENE

General Background Information

Benzo[a]pyrene (BaP) is a member of the class of compounds generally referred to as polyaromatic hydrocarbons (PAH). PAHs contain two or more aromatic rings. They are ubiquitous in nature and are both naturally occurring and man-made. BaP is a component of fossil fuels and is produced from incomplete combustion of organic compounds. BaP and other PAHs are found in coal tar, creosote oils and pitches formed from distillation of coal tars (ATSDR, 1990).

Pharmacokinetics

BaP is readily absorbed by dermal, inhalation and oral routes (see section on Relative Absorption Factors). Distribution of BaP is rapid among several tissues. Following inhalation exposure to ³H labeled BaP, maximum levels of radioactivity were found in the liver, esophagus, small intestine and blood after 30 minutes. After 12 hours, maximum levels were found in the cecum, stomach and large intestine (Sun et al., 1982). This and other studies provide evidence for the enterohepatic circulation of BaP metabolites.

Mammalian metabolism of BaP follows the mechanism established for smaller aromatic compounds (Williams, 1959). There is an initial oxidation of a double bond on one of the rings to an arene oxide. The oxide is then hydrolyzed to the diol. Oxidations may occur at multiple sites on the BaP molecule. Phase II metabolism is considered the detoxication pathway and involves the conjugation of the activated Phase I metabolites with easily eliminated substrates such as glutathione, glucuronide or sulfate (Cooper et al., 1983). In addition to being conjugated, the diol intermediate can undergo (1) further oxidation to several uncharacterized metabolites via the P-450 monooxygenase system, (2) spontaneous rearrangement to the phenol or (3) hydration to the trans-diols through a reaction catalyzed by epoxide hydrolase (Cooper et al., 1983). BaP 7,8-diol-9,10-epoxide has been established as an ultimate carcinogen (ATSDR, 1990). The primary route of excretion of BaP is through the feces. BaP undergoes first-pass metabolism and is reabsorbed via enterohepatic circulation (Chipman et al., 1982). Rats exposed by gavage to ¹⁴C labeled BaP in peanut oil excreted up to 85% in the feces. Excretion in the urine was 1 to 3% of the administered dose (Hecht et al., 1979).

Human Toxicological Profile

The database for the toxicological effects of BaP on humans, separate from PAHs, is limited. Toxic effects attributable to mixtures of PAHs include a variety of skin lesions and non-cancer lung diseases such as bronchitis (IARC, 1973).

Mammalian Toxicological Profile

BaP is a moderately potent experimental carcinogen in numerous species by many routes of exposure (IARC, 1983). Mice exposed to doses of BaP ranging from 1.5 to 400 mg/kg/d developed benign and malignant tumors of the forestomach (Hartwell, 1951; Thompson, 1971). Acute intragastric doses of 50 to 67 mg/kg of BaP have been shown to elicit pulmonary adenomas and forestomach papillomas in mice (Sparnins et al., 1986; Wattenberg and Beuding, 1986). Intermittent gavage exposure of mice to 50 to 67 mg/kg BaP resulted in 100% forestomach and pulmonary tumor incidences at 30 weeks of age (Sparnins et al., 1986; Wattenberg and Leong, 1970). Mice fed BaP at concentrations equivalent to 33.3 mg/kg/d exhibited gastric neoplasms following two or more days of consumption. However, lower concentrations of BaP (equivalent to 13.3 mg/kg/d) administered for up to 7 days did not produce any forestomach tumors (Neal and Rigdon, 1967). Hamsters have developed papillomas and carcinomas of the alimentary tract following gavage or dietary exposure to BaP (Chu and Malmgrem, 1965). A single oral dose of 100 mg BaP (200mg/kg) produced mammary tumors in 88% of female Sprague-Dawley rats (Huggins and Yang, 1962). A 77% mammary tumor incidence was observed 90 weeks after a single oral dose of BaP of 50 mg (100mg/kg) was administered to rats (McCormick, 1981).

Genotoxicity

There are no studies relating exposure to BaP in humans to genotoxicity. In short-term *in vitro* and *in vivo* genetic toxicology tests, BaP has been shown to be a potent genotoxic agent when metabolically activated. In mice, oral exposure to 10 mg/kg BaP produced gene mutations in the mouse coat color spot test (Davidson and Dawson, 1976,1977). BaP shows positive mutagenic activity, in vitro, in several strains of *Salmonella typhimurium* in the presence of either rodent microsomes or hepatocytes for exogenous metabolic activation (ATSDR, 1990). Epidemiological studies have shown increased incidences of lung cancer in humans exposed via inhalation to mixtures of PAHs which include BaP (ATSDR, 1990).

- Agency for Toxic Substances and Disease Registry (ATSDR) (1990) Toxicological profile for benzo(a)pyrene. U. S. Public Health Service.
- Chipman, J.K., Hirom, P.C., Front, G.S. and Milburn, S. (1982) *Benzo(a)pyrene metabolism and enterohepatic circulation in the rat.* In: Snyder, R. et al. eds. Biological Reactive Intermediates II. Chemical Mechanisms and Biological Effects, Part A. Plenum Press. New York, pps. 761-768.
- Chu, E.W. and Malmgren, R.A. (1965) *An inhibitory effect of vitamin A on the induction of tumors in the forestomach and cervix in the Syrian hamster by carcinogenic polycyclic hydrocarbons.* **Cancer Res.** 25: 884-895.
- Cooper, C.S., Grover, P.L. and Sims, P. (1983) *The metabolism and activation of benzo(a)pyrene*. In: Bridges, J.W., Chase, L.F. eds. Progress in drug metabolism. Vol. 7. John Wiley and Sons, New York. pps. 295-395.
- Davidson, G.E. and Dawson, G.W.P. (1976) *Chemically induced presumed somatic mutations in the mouse.* **Mutat. Res.** 38:151-154.
- Davidson, G.E. and Dawson, G.W.P. (1977) *Induction of somatic mutations in mouse embryos by benzo(a)pyrene*. **Arch. Toxicol.** 38:99-103.
- Hecht, S.S., Grabowski, W. and Groth, K. (1979) *Analysis of faeces for BaP after consumption of charcoal-broiled beef by rats and humans.* **Food Cosmet. Toxicol.** 17:223-227.
- Huggins, C. and Yang, N.C. (1962) *Induction and extinction of mammary cancer.* **Science** 137:257-262.
- International Agency for Research on Cancer (IARC) (1983) IARC monograph on the evaluation of carcinogenic risk of chemicals to man. Vol 32 IARC, Lyon, France.
- Mc Cormick, D. et al. (1981) *Inhibition of benzo(a)pyrene induced mammary carcinogenesis by retinyl acetate.* **J. Natl. Cancer Inst.** 66:559-564.
- Neal, J. and Rigdon, R.H. (1967) *Gastic tumors in mice fed benzo(a)pyrene: A quantitative study.* **Tex. Rep. Biol. Med.** 25:553-557.
- Sanders, C.L., Skinner, C. and Gelman, R.A. (1986) *Percutaneous absorption of 7,10* ¹⁴C-benzo(a)pyrene and 7,12 ¹⁴C-dimethylbenz(a)anthracene in mice. **JEPTO** 2:25-34.
- Sparnins, V.L., Mott, A.W., Baraney, G. and Wattenberg, G. (1986) *Effects of allyl methyl trisulfide on glutathione-s-transferase activity.* **Nutr. Cancer** 8:211-215.

- Sun, J.D., Wolff, R.K., and Kanapilly, G.M., (1982) Deposition, retention and biological fate of inhaled pure benzo(a)pyrene adsorbed onto ultrafine particles and as a pure aerosol. **Toxicol. Appl. Pharmacol.** 65:231-244.
- Wattenberg, L.W. and Bueding, E. (1986) *Inhibitory effects of 5-(2-pyrazonyl)-4-methyl-1,2-dithiol-3-thione* (Oltipraz) on carcinogenesis induced by benzo(a)pyrene, diethylnitrosomine, and uracil mustard. **Carcinogenesis** 7:1379-1381.
- Wattenberg, L.W. and Leong, J.L. (1970) *Inhibition of the carcinogenic action of benzo(a)pyrene by flavones.* **Cancer Res.** 30:1922-1925.

Williams, R.T. (1959) Detoxication Mechanisms. 2nd ed. Chapman and Hall, London.

CHRYSENE

General Background Information

Chrysene is one of the polycyclic aromatic hydrocarbon (PAH) compounds which are formed during the combustion of organic material. Chrysene often exists in particulate form, adsorbing to existing particulate material in air. Human exposure can occur in the workplace (coal and asphalt production plants, cooking plants, smoke houses) or in the environment due to chrysene contamination of air, food, soil and water (ATSDR, 1990).

Pharmacokinetics

Chrysene can be absorbed by all routes of exposure (see section on Relative Absorption Factors). Its absorption is believed to be qualitatively similar to benzo[a]pyrene (ATSDR, 1990). Following absorption, chrysene distributes to all organs, reaching the highest concentration in tissues with large fat content (adipose tissue, mammary tissue, brain) (Modica et al., 1983). Chrysene undergoes metabolic biotransformation mediated by the mixed function oxidase enzyme system to form reactive intermediates hypothesized to be responsible for its toxicity. The major metabolites include trans-dihydrodiols, phenols, diol epoxides and triol epoxides (Thakker et al., 1985). The reactive metabolites are conjugated and excreted primarily in feces (Schlede et al., 1970).

Human Toxicological Profile

There is no information available on threshold toxic effects of chrysene in humans. Since it is structurally similar to benzo[a]pyrene, it would be expected to produce effects similar to B[a]P following acute or chronic exposure (see Toxicity Profile on Benzo[a]pyrene).

Mammalian Toxicological Profile

There is no information available on threshold toxic effects of chrysene in animals. Since it is structurally similar to benzo[a]pyrene, it would be expected to produce effects similar to B[a]P following acute or chronic exposure (see Toxicity Profile for Benzo[a]pyrene).

Genotoxicity

The genotoxicity of chrysene has been evaluated in in vivo and in vitro cytogenetic tests. Chrysene produced weak positive results in bacterial mutation assays, human epithelial mutation studies, cell transformation assays and in vivo cytogenetic studies (Waters et al., 1987). Metabolism of chrysene is essential to produce the observed positive responses. Chrysene is not genotoxic in all test systems, however, it is believed to be a weak mutagen (ATSDR, 1990). The carcinogenicity of chrysene has not been adequately studied. There are no reports directly correlating human chrysene exposure and tumor development. There is limited evidence that chryesene is a skin carcinogen in animals following long-term dermal application (Wynder and Hoffmann, 1959; Hecht et al., 1974).

REFERENCES

Agency for Toxic Substances and Disease Registry (ATSDR) (1990) <u>Toxicological profile for chrysene</u>. U.S. Department of Health and HUman Services, Public Health Service.

Hecht, S.S., Bondinell, W.E. and Hoffmann, D. (1974) *Chrysene and methylchrysene: Presence in tobacco smoke and carcinogenicity.* **J. Natl. Cancer Inst.** 53:1121-1133.

- Modica, R., Fiume, M., Guaitani, A. and Bartosek, I. (1983) *Comparative kinetics of benz[a]anthracene, chrysene and triphenylene in rats after oral administration*. **Toxicol. Lett.** 18:103-109.
- Schlede, E., Kuntzman, R., Haber, S. and Conney, A.H. (1970) *Effect of enzyme induction on the metabolism and tissue distribution of benzo[a]pyrene*. **Cancer Res.** 30:2898-2904.
- Thakker, D.R., Yagi, H., Levin, W., Wood, A.H., Conney, A.H. and Jerina, D.M. (1985) *Polycyclic aromatic hydrocarbons: Metabolic activation of ultimate carcinogens*. In Anders, M.W., ed. <u>Bioactivation of Foreign Compounds</u>. Academic Press, New York, pps. 178-242.
- Waters, M.D., Stack, H.F., Brady, A.L., Lohman, P.H., Haroun, L. and Vainio, H. (1987) <u>Use of computerized data listings and activity profiles of genetic and related effects in the review of 195 compounds</u>. Genetic Toxicology Division, Health Effects Research Laboratory, EPA, Reasearch Triangle Park, N.C.
- Wynder, E.L. and Hoffmann, D. (1959) *A study of tobacco carcinogenesis. VII. The role of higher polycyclic hydrocarbons.* **Cancer** 12:1079-1086.

FLUORANTHENE

General Background Information

Fluoranthene is a member of the polyaromatic hydrocarbons (PAH). PAHs constitute a class of non-polar compounds that contain two or more aromatic rings. They are ubiquitous in nature and are both naturally occurring and man-made. Fluoranthene has been detected in food, cigarette smoke, and smoke from industrial and natural burning.

Pharmacokinetics

No data were found regarding the pharmacokinetics of fluoranthene.

Human Toxicological Profile

The database for the toxicological effects of fluoranthene on humans, separate from other PAHs, is limited. Toxic effects attributable to mixtures of PAHs include a variety of skin lesions and non-cancer lung diseases such as bronchitis (IARC, 1973).

Mammalian Toxicological Profile

The database on the toxicity of fluoranthene is limited. A 13 week subchronic study where CD-1 mice were gavaged with up to 500 mg/kg-day of fluoranthene indicated nephropathy, increased liver weights, hematological alterations and clinical effects (EPA, 1988). A developmental study in which fluoranthene was administered once via intraperitoneal injection to pregnant mice reported only an increased rate of embryo resorption (Irvin and Martin, 1987).

Chronic dermal application of up to 1 percent fluoranthene to the backs of mice did not induce skin tumors following lifetime application (Hoffman et al, 1972; Horton and Christian, 1974; and Wydner and Hoffman, 1959a). Fluoranthene is not a complete carcinogen (ATSDR, 1990) and does not exhibit iniation activity (Hoffman et al, 1972).

Genotoxicity

There is some evidence that fluoranthene is genotoxic (ATSDR, 1990). Genotoxic effects have been reported in human cells with exogenous metabolic activation, but negative results were recorded without metabolic activation.

- Agency for Toxic Substances and Disease Registry (ATSDR) (1990) Toxicological profile for polycyclic aromatic hydrocarbons. U. S. Public Health Service.
- Hoffman, D. et al. (1972) Fluoranthenes: Quantitative determination in cigarette smoke, formation by pyrolsis and tumor initiating activity. **JNCI** 49:1165-1175.
- Horton, A.W. and Christian, G.M. (1974) Cocarcinogenic versus incomplete carcinogenic activity among aromatic hydrocarbons: contrast between chrysenes and benzo(b)triphenylene. J Natl Cancer Inst 53:1017-1020.
- International Agency for Research on Cancer (IARC) (1983) Monograph on the evaluation of chemicals in man, fluoranthene, 32:355-364.

- Irvin, T.R. and martin, J.E. (1987) *In vitro and in vivo embryotoxicity of fluoranthene, a major prenatal toxic component of diesel soot.* **Teratology** 35:65A.
- U.S. Environmental Protection Agency (EPA) (1988) <u>13-week mouse oral subchronic toxicity study</u>. Prepared by Toxicity Research Laboratories, Ltd. Muskegon, MI for the Office of Solid Waste, Washington, D.C.
- Wydner. E.L. and Hoffman, D. (1959) *A study of tobacco carcinogenesis. VII. The role of higher polycyclic hydrocarbons.* **Cancer** 12:1079-1086.

FLUORENE

General Background Information

Fluorene is a member of the polyaromatic hydrocarbons (PAH). PAHs constitute a class of non-polar compounds that contain two or more aromatic rings. They are ubiquitous in nature and are both naturally occurring and man-made. The data on fluorene are very limited. Low levels of (5 to 67 ug/kg) have been detected in smoked meats (U.S. EPA, 1982).

Pharmacokinetics

No data were found regarding the pharmacokinetics of fluorene.

Human Toxicological Profile

The database for the toxicological effects of fluoranthene on humans, separate from other PAHs, is limited. Toxic effects attributable to mixtures of PAHs include a variety of skin lesions and non-cancer lung diseases such as bronchitis (IARC, 1973).

Mammalian Toxicological Profile

Limited information is available on the threshold effects of fluorene. An EPA study (EPA,1989) indicated that CD-1 mice exposed by gavage to up to 500 mg/kg-day of fluorene showed hypoactivity as well as a decrease in red blood cell count and packed cell volume and hemoglobin. Increases in absolute and relative liver, spleen and kidney weights was also observed. Gershbein (1975) reported that partially hepatectomized rats fed a diet of 180 mg/kg-day of fluorene for 10 days showed a statistically significant increase in liver regeneration, which is indicative of the ability to induce a proliferative response.

Fluorene is not reported to be a complete skin carcinogen (ATSDR, 1990). It was inactive as a tumor initiator when an estimated total dose of 1.0 mg was applied prior to the application of tetradecanoyl phorbol acetate (LaVoie et al, 1980).

Genotoxicity

There is no evidence that fluorene is genotoxic, but genotoxicity has been studied only in a few in vitro assays (ATSDR, 1990).

REFERENCES

- Agency for Toxic Substances and Disease Registry (ATSDR) (1990) Toxicological profile for polycyclic aromatic hydrocarbons. U. S. Public Health Service.
- Gershbein, L.L. (1975) *Liver regeneration as influenced by the structure of aromatic and heterocyclic compounds.* **Res Commun Chem Pathol Pharmacol** 11:445-466.
- International Agency for Research on Cancer (IARC) (1983) *Monograph on the evaluation of carcinogenic risk of chemicals to man, fluorene.* 32: 419-430.
- LaVoie, E.J. (1980) *Identification of mutagenic hydrodiols as metabolites of benzo(j)fluoranthene and bnezo(k)fluoranthene*. **Cancer Research** 40:4528-4532.
- U.S.Environmental Protection Agency (U.S.EPA) (1982) An exposure and risk assessment of polycyclic aromatic hydrocarbons (fluorene). U.S.EPA Contract 68-01-6017. Office of Water Regulations & Standards, Washington, D.C.
- U.S. Environmental Protection Agency (EPA) (1989) <u>Mouse oral subchronic toxicity study</u>. Prepared by Toxicity Research Laboratories, Ltd. Muskegon, MI for the Office of Solid Waste, Washington, D.C.

INDENO[1,2,3-cd]PYRENE

General Background Information

Indeno[1,2,3,-cd]pyrene is a member of the polyaromatic hydrocarbons (PAH). PAHs constitute a class of non-polar compounds that contain two or more aromatic rings. They are ubiquitous in nature and are both naturally occurring and man-made. Indeno[1,2,3-cd]pyrene is present in cigarette smoke (IARC, 1983) as well as emissions from industrial stacks.

Pharmacokinetics

No data were found regarding the pharmacokinetics of indeno[1,2,3-cd]pyrene. However, its metabolism should be similar to another non-alternant PAH, benzo(b)fluoranthene (ATSDR, 1990).

Human Toxicological Profile

The database for the toxicological effects of indeno[1,2,3-cd]pyrene on humans, separate from other PAHs, is limited. Toxic effects attributable to mixtures of PAHs include a variety of skin lesions and non-cancer lung diseases such as bronchitis (IARC, 1973).

Mammalian Toxicological Profile

Studies on laboratory animals have demonstrated that indeno[1,2,3-cd]pyrene can induce skin tumors (i.e. it is a complete carcinogen) following dermal exposure (ATSDR, 1990). It has tumor initiating activity, but is not as potent as benzo(b)fluoranthene (Rice et al, 1985).

Carcinogenic PAHs as a group are immunosuppressant, with the degree of suppression correlated with the degree of potency (ATSDR, 1990)

Genotoxicity

In test systems using non-human cells, indeno[1,2,3-cd]pyrene was found to be genotoxic (ATSDR 1990).

REFERENCES

Agency for Toxic Substances and Disease Registry (ATSDR) (1990) Toxicological profile for polycyclic aromatic hydrocarbons. U. S. Public Health Service.

International Agency for Research on Cancer (IARC) (1983) *Monograph on the evaluation of carcinogenic risk of chemicals to man, Indeno(1,2,3-cd)pyrene.* 32:419-430.

Rice, J.E. et al. (1985) *On the metabolism, mutagenicity and tumor-initiating activity of ideno(123cd)pyrene.*In: Cooke, M. Dennis, A.J. eds. Polynuclear aromatic hydrocarbons: metabolisms, methods and metabolism. Proceedings of the Eighth International Symposium. Columbus, Ohio: Battelle Press, 10970-1109.

PHENANTHRENE

General Background Information

Phenanthrene is a member of the polyaromatic hydrocarbons (PAH). PAHs constitute a class of non-polar compounds that contain two or more aromatic rings. They are ubiquitous in nature and are both naturally occurring and man-made. The database on the potential health effects of phenanthrene is limited.

Pharmacokinetics

Little data are available regarding the pharmacokinetics of phenanthrene. The intestinal absorption of phenanthrene is less dependent on the presence of bile in the stomach than is the absorption of the larger PAHs (such as benzo(a)pyrene) (Rahman et al, 1986).

Human Toxicological Profile

Phenanthrene has been shown to be a skin photosensitizer in humans (Sax, 1984).

Mammalian Toxicological Profile

Phenanthrene has a reported LD 50 of 700 mg/kg in mice (Simmon et al., 1979). Rats injected intraperitoneally evidenced liver effects (Yoshikawa et al, 1987).

There is equivocal evidence for cancer from dermal application of phenanthrene in rats (IARC, 1983). Phenanthrene is not a complete skin carcinogen (ATSDR, 1990). It is neither an initiator (LaVoie et al, 1981; Roe, 1962) nor a promoter (Roe and Grant, 1964). Higgins and Yang (1962) reported no tumor production within two months after the ingestion of 200 mg of phenanthrene by rats.

Genotoxicity

There are limited data that suggest that phenanthrene is mutagenic (Wood et al., 1979). However, the majority of tests are negative (ATSDR, 1990).

- Agency for Toxic Substances and Disease Registry (ATSDR) (1990) Toxicological profile for polycyclic aromatic hydrocarbons. U. S. Public Health Service.
- Higgins, L. and Yang, Y. (1962) Induction and extinction of mammary cancer. Science 137:257-262.
- International Agency for Research on Cancer (IARC) (1983) *Monograph on the evaluation of carcinogenic risk of chemicals to man, Phenanthrene.* 32:419-430.
- LaVoie, K. et al. (1981) *Mutagenicity and tumor initiating activity and metabolism of phenanthrenes*. **Cancer Res.** 41:3441-3447.
- Rahman, A., Barrowman, J.A., Rahimtula, A. (1986) *The influence of bile on the bioavailability of polynuclear aromatic hydrocarbons from the rat intestine*. **Can J Physio Pharmacol** 64:1214-1218.
- Roe, F.J.C. (1962) Effect of phenanthrene on tumour-initiation by 3,4-benzpyrene. Br J Cancer 16:503-506.
- Sax, N.I. (1984) Dangerous Properties of Industrial Materials. 6th edition. Van Nostrand Reinhold Company. N.Y.

- Simmon, P. et al. (1979) *Mutagenic activity of chemicals carcinogens and related compounds in the intraperitoneal host-mediated assay.* **J. Natl. Cancer Inst.** 62:911-918.
- Wood, R. et al. (1979) *Mutagenicity and tumorigenicity of phenanthrene and chrysene epoxides and diol epoxides.* Cancer Res. 39:4069-4077.
- Yoshikawa, T. et al. (1987) *Toxicity of polycyclic aromatic hydrocarbons III. Effects of beta-naphtoflavone pretreatment on hepatotoxicity of compounds produced in the ozonation or NO2-nitration of phenanthrene and pyrene by rats.* **Vetern Human Toxicol.** 29:113-117.

PYRENE

General Background Information

Pyrene is a member of the polyaromatic hydrocarbons (PAH). PAHs constitute a class of non-polar compounds that contain two or more aromatic rings. They are ubiquitous in nature and are both naturally occurring and man-made. As with many of the other PAHs, pyrene has been detected in charbroiled meats and shellfish (U.S. EPA, 1982). It is found in tobacco smoke, industrial stack smoke, and smoke from forest fires.

Pharmacokinetics

No data were found regarding the pharmacokinetics of pyrene.

Human Toxicological Profile

Pyrene is reported to be a skin irritant (Sax, 1984).

Mammalian Toxicological Profile

Rats given 150 mg/kg of pyrene had changes in blood chemistry, liver and kidney damage (USEPA, 1982). A 1989 EPA study (EPA, 1989) reported nephropathy and decreased kidney weights in mice exposed to 125 mg/kg-day of pyrene by gavage for 13 weeks.

Mouse skin painting assays indicate that pyrene is neither a complete skin carcinogen, nor an initiating agent (ATSDR, 1990, IRIS, 1991).

Genotoxicity

The majority of genotoxic tests of pyrene are negative. Positive results have been recorded in Salmonella typhimurium mutagenicity tests and in in vitro mammalian cell systems (ATSDR, 1990).

REFERENCES

- Agency for Toxic Substances and Disease Registry (ATSDR) (1990) <u>Toxicological profile for polycyclic aromatic hydrocarbons</u>. U. S. Public Health Service.
- Sax, N.I. (1984) <u>Dangerous Properties of Industrial Materials</u>. 6th Edition. Van Nostrand Reinhold Company. N.Y.
- U.S. Environmental Protection Agency (U.S. EPA) (1982) <u>An exposure and risk assessment of polycyclic aromatic hydrocarbons (pyrene)</u>. USEPA Contract 68-01-6017. Office of Water Regulations and Standards, Washington, D.C.
- U.S. Environmental Protection Agency (EPA) (1989) Mouse oral subchronic toxicity study of pyrene. Prepared by Toxicity Research Laboratories, Ltd. Muskegon, MI for the Office of Solid Waste, Washington, D.C.

Integrated Risk Information System (IRIS) (1991) U.S. Environmental Protection Agency.

BARIUM

Barium is a divalent alkaline-earth metal found only in combination with other elements in nature. The most important of these combinations are the peroxide, chloride, sulfate, carbonate, nitrate, and chlorate. The pure metal oxidizes readily and reacts with water emitting hydrogen. The most likely source of barium in the atmosphere is from industrial emissions. Barium compounds are used by the oil and gas industries to make drilling muds. Drilling muds make it easier to drill through rock by keeping the drill bit lubricated. They are also used to make paint, bricks, tiles, glass, and rubber. A barium compound (barium sulfate) is sometimes used by doctors to perform medical tests and to take barium-rays of the stomach. Since it is usually present as a particulate form, it can be removed from the atmosphere by wet precipitation and deposition. Due to the element's tendency to form salts with limited solubility in soil and water, it is expected to have a residence time of hundreds of years and is not expected to be very mobile. Trace amounts of barium were found in more than 99% of the surface waters and finished drinking water samples across the United States.

The soluble salts of barium are toxic in mammalian systems. They are absorbed rapidly from the gastrointestinal tract and are deposited in the muscles, lungs, and bone. Inhalation exposure of human populations to barium-containing dust can result in a benign pneumoconiosis called "baritosis." At low doses, barium acts as a muscle stimulant and at higher doses affects the nervous system eventually leading to paralysis. Acute and subchronic oral doses of barium cause vomiting and diarrhea, followed by decreased heart rate and elevated blood pressure. Higher doses result in cardiac irregularities, weakness, tremors, anxiety, and dyspnea. A drop in serum potassium may account for some of the symptoms. Death can occur from cardiac and respiratory failure. Acute doses around 0.8 grams can be fatal to humans.

The Department of Health and Human Services, the International Agency for Research on Cancer, and the Environmental Protection Agency (EPA) have not classified barium as to its human carcinogenicity.

CADMIUM

General Background Information

Cadmium typically exists in the environment as a salt of the +2 valence state or as a metal. It forms no stable organic compounds. Cadmium releases are generally associated with mining, smelting, manufacturing operations, and from the disposal of alkaline batteries containing cadmium (Doull, 1980; U.S. EPA, 1981).

Pharmacokinetics

Cadmium is absorbed by all routes of exposure (see section on Relative Absorption Factors). Absorption through the gastrointestinal tract is low, respiratory absorption more efficient and dermal absorption relatively insignificant (ATSDR, 1989). Absorbed cadmium is widely distributed throughout the body, with the major portion of the body burden located in liver and kidney (Sumino et al., 1975). The distribution of cadmium is linked to the distribution of metallothionein, a low-moleculer-weight protein, rich in cadmium-binding sites. Cadmium is not known to undergo any direct metabolic conversions in vivo. The principle excretory route for absorbed cadmium is urinary. Excretion is slow, accounting for the long half-life of cadmium in the body (17-38 years) (ATSDR, 1989).

Human Toxicological Profile

Cadmium is a local respiratory tract irritant. Systemic symptoms occur in a few hours after an acute exposure to cadmium dust or fumes. Upper respiratory tract irritation is followed by coughing, chest pain, sweating, and chills. These symptoms resemble nonspecific upper respiratory infection (Sittig, 1985). Within 24 hours severe pulmonary irritation may develop, with progressively increasing pain in the chest, dyspnea, pulmonary edema, cough, and generalized weakness. Chronic exposure to cadmium fumes may result in emphysema-like lung damage (Sittig, 1984). Renal dysfunction may ensue (Friberg, 1950). Bernard and Lauwerys (1984) observed that the gastrointestinal tract is adversely affected by acute oral exposure with such symptoms as nausea, vomiting, salivation, abdominal pain, cramps, and diarrhea. The principal effects of chronic cadmium exposure are osteomalacia and osteoporosis (Itai Itai disease) secondary to glomerular and tubular necrosis in the kidney. The Itai Itai ("ouch-ouch") disease is endemic areas in Japan, which have been contaminated with mining wastes containing cadmium. Victims display the osteomalacia and osteoporosis as primary symptoms, as well as protein, sugar and amino acids not normally found in the urine. Other chronic effects include immunosuppression and decreases in measures of respiratory fitness (ventilation capacity, vital capacity, forced expiratory volume, etc.) (U.S. EPA, 1981).

Mammalian Toxicological Profile

Several subchronic and chronic oral toxicity studies have been conducted in animals. Koller et al. (1975) and Fitzhugh and Meiller (1941) conducted feeding studies using mice and rats, respectively. The first group of researchers reported immunological impact manifested by a decrease in the number of lymphocytes secreting antibodies (to sheep red blood cells) as well as some renal effects. The second set of authors observed hematological symptoms expressed as marked anemia. Yuhas et al. (1979) conducted a drinking water study using Sprague-Dawley male rats. Decreased weight gain was observed at the highest dose level. In addition, the authors identified increases in cadmium content and decreases in the zinc content of the bone. Renal dysfunction or otherwise generalized adverse effects on the kidney have been reported in a number of long-term cadmium ingestion studies (Friberg et al., 1974; Kijikawa et al., 1981; Schroeder et al., 1964; Kanisawa and Schroder, 1969). In addition, the latter two research groups have observed renal and cardiac arteriosclerosis.

Genotoxicity

Results of mutagenicity tests in bacteria and yeasts have been inconclusive. Positive results have been obtained in mutation assays in Chinese hamster cells and in mouse lymphoma cells. Conflicting results have been obtained in assays of chromosomal aberrations in human lymphocytes treated in vitro or obtained from exposed workers. Cadmium treatment in vitro or in vivo appears to result in aneuploidy in germ cells of mice or hamsters (ATSDR, 1989). Reports of elevated prostate cancer in cadmium workers have been evaluated as insufficient evidence of the carcinogenic action of the compound (U.S. EPA, 1985), but the elevated risk of lung cancer observed by Thun et al. (1985) is more convincing. Thus, the carcinogenic potential of inhaled cadmium should be viewed as limited, but suggestive. Although ingestion of cadmium may result in kidney effects, no carcinogenic response has been demonstrated for this route.

- Agency for Toxic Substances and Disease Registry (ATSDR) (1989) <u>Toxicological profile for cadmium</u>. U.S. Public Health Service.
- Bernard, A. and Lauwerys, R. (1984) Cadmium in the human population. Experimenti 40:143-152.
- Doull, J., Klassen, C.D. and Amdur, M.D. (1980) <u>Casarett and Doull's Toxicology</u>, 2nd ed., MacMillan Publishing Co.., Inc. New York.
- Fitzhugh, O.G. and Meiller, F.H. (1941) The chronic toxicity of cadmium. J. Pharm. Exp. Ther. 72:15.
- Friberg, L. (1950) *Health hazards in the manufacture of alkaline accumulators with special reference to chronic cadmium poisoning.* **Acta. Med. Scand.** 138(Suppl. 240): 1-124.
- Friberg, L., Piscator, M., Nordberg, G.F. and Kjellstrom, T. (1974) <u>Cadmium in the Environment</u>, 2nd ed., CRC Press, Boca Raton, FL.
- Kanisawa, M. and Schroeder, H.A. (1969) *Life term studies on the effect of trace elements on spontaneous tumors in mice and rats.* **Cancer Res.** 29:892-895.
- Kijikawa, K., Nakanishi, I. and Kuroda, K. (1981) *Morphological changes of the kidney and bone of rats in chronic cadmium poisoning*. **Exp. Molec. Pathol.** 34:9-24.
- Koller, L.D., Exon, J.H. and Roan, J.G. (1975) *Antibody suppression by cadmium*. **Arch. Environ. Health** 30:598.
- Schroeder, H.A., Balassa, J.J. and Vinton, W.H. (1964) *Chromium, lead, cadmium, nickel, and titanium in mice: Effects on mortality, tumors and tissue levels.* **J. Nutr.** 83:239-250.
- Sittig, M. (1985) <u>Handbook of Toxic and Hazardous Chemicals and Carcinogens</u>. Noyes Publication; Park Ridge, NJ.
- Sumino, K., Hayakawa, K., Shibata, T. and Kitamura, S. (1975) *Heavy metals in normal Japanese tissues*. **Arch. Environ. Health** 30:487-494.
- Thun, M.J., Schnorr, T.M., Smith, A., Halperin, W.E. and Lewen, R.A. (1985) *Mortality among a cohort of U.S. cadmium production workers an update.* **J. Natl. Cancer Inst.** 74:325-333.

- U.S. Environmental Protection Agency (EPA) (1981) <u>Health assessment document for cadmium</u>. Environmental Criteria and Assessment Office. EPA-600/8-81/023.
- U.S. Environmental Protection Agency (EPA) (1985) <u>Cadmium contamination of the environment: an assessment of nationwide risk</u>. Office of Health and Environmental Assessment. EPA-440/4-85-023.
- Yuhas, E.M., Miya, T.S. and Schnell, R.C. (1979) *Dose-related alterations in growth and mineral deposition* by chronic oral cadmium administration in the male rat. **Toxicology** 12:19-29.

CHROMIUM

General Background Information

Chromium is used in plating for corrosion resistance and decorative purposes (appliances, tools, automobiles, etc.), in the manufacture of alloys (including stainless steel and heat resistant alloys), and in printing, dyeing, photography, tanning, and numerous other industrial applications (ATSDR, 1989).

Pharmacokinetics

Absorption studies of chromium compounds indicate that it is absorbed by all routes of exposure (see section on Relative Absorption Factors) with chromium (VI) compounds being more readily absorbed than chromium (III) compounds. Once absorbed, chromium is rapidly distributed to all organs, including the developing fetus. Chromium VI is readily reduced to Cr III in vivo. Excretion occurs primarily through the kidneys via urine (ATSDR, 1989).

Human Toxicological Profile

In humans, the respiratory tract is the primary system of concern for chromium toxicity. Renal damage has also been observed. Hexavalent chromium has been shown to be highly toxic, causing ulceration of nasal mucosa and carcinoma of the lung following long-term occupational exposure. Cases of acute poisoning in man have been reported from the medical use of chromic acid.

Chronic exposures of workers in chromium-related industries have been observed to result in skin and nasopharyngeal irritations. Both Cr(III) an Cr(VI) can cause allergic contact dermatitis and irritation (Samitz and Shrager, 1966). Chromium was shown to be an allergen in recurrent contact dermatitis of the feet (Correia and Brandao, 1986). Hexavalent forms are responsible for effects on the upper respiratory system, including ulceration and perforation of the nasal septum, chronic rhinitis, and pharyngitis. Lindberg and Hedenstierna (1983) reported that subjective and objective evidence of adverse nasal effects were found at exposure levels of 2 to 20 ug Cr(VI)/m³ but not at less than 1 ug/m³. They also reported that workers exposed to 2 to 20 ug Cr(VI)/m³ had slight transient decreases in measures of pulmonary mechanics (e.g., forced vital capacity, FVC) with recovery (no changes) seen by two (non-exposed) days later.

Mammalian Toxicological Profile

In laboratory animals, Cr compounds are of low oral acute toxicity. Hexavalent chromium is more acutely toxic than Cr(III), with kidney failure being the primary symptom. The LC_{50} in rats for inhalation of sodium chromate(VI) was reported as 33 mg $Cr/m^3/4H$, and the LD_{50} 's for oral and dermal exposures were given as 16.7 mg Cr/kg and 514 mg Cr/kg, respectively (Gad et al., 1986). Chromium was found to localize in the proximal renal tubules when intraperitoneal doses of potassium dichromate were administered to rats 5 times weekly for 8 months (Berry et al., 1978). Low level hexavalent chromium exposure increases respiratory defense mechanisms while they are inhibited by long-term, high level exposure (Glaser et al., 1985). Chromium salts have been shown to be teratogenic and embryotoxic in mice and hamsters following intravenous or intraperitoneal injection. However, these are unnatural routes of administration for assessing effects of environmental exposures, and further research is needed (U.S. EPA, 1984).

Genotoxicity

Both Cr(III) and Cr(VI) have been shown to interact with DNA in bacterial systems. Cr(III) is generally considered to be a relatively inactive genotoxic agent since it is unable to cross cell membranes. It was recently shown, however, to cause chromosomal aberrations in human lymphocytes (Friedman et al., 1987).

m:\risk resources\tox profiles\chromium.doc

Hexavalent chromium has consistently caused transformations and mutations in a wide variety of in vitro assays (Bianchi and Lewis, 1985). Chromosomal damage has been observed in lymphocytes cultured from workers exposed to chromium. The epidemiologic studies of respiratory cancer in chromate production workers provide the bulk of the evidence for chromium carcinogenicity. Studies of chromate production facilities in the United States, Great Britain, and Japan have all found an association between occupational exposure to chromium and lung cancer (U.S. EPA, 1984). Workers were exposed to both Cr(VI) and Cr(III), and it is unclear whether Cr(VI) alone is the etiologic agent or whether Cr(III) is implicated as well. The U.S. EPA (1984) concluded that in rats, only calcium chromate had consistently produced lung tumors by several routes of administration, and that other Cr(VI) compounds produced local sarcomas or lung tumors in rats at the site of administration (subcutaneous, intraperitoneal, intermuscular, intrabroncheal, and intratracheal). Trivalent chromium compounds have not been found to be carcinogenic by any route of administration, but these compounds have not been studied as extensively.

REFERENCES

- Agency for Toxic Substances and Disease Registry (ATSDR) (1989) <u>Toxicological profile for chromium</u>. U.S. Public Health Service.
- Berry, J.P., Houdry, J., Galle P. and Laquie, G. (1978) *Chromium concentration by proximal renal tubule cells:an ultrastructural microanalytical and cytochemical study.* **J. Histochem. Cytochem.** 26:651-657.
- Bianchi, B. and Lewis, A.G. (1985) *Mechanisms of chromium genotoxicity*. In: Merian, E., Fre, R.W., Hardi, W. and Schlatter, C. (eds). <u>Carcinogenic and Mutagenic Metal Compounds</u>: <u>Environmental and Analytical Chemistry</u>, and Biological Effects. Gordon and Breach Science Publishers, London.
- Correia, S., and Brandao, F.M. (1986) Contact dermatitis of the feet. Derm. Beruf. Umwelt. 34:102-106.
- Friedman, J., Shabtai, F., Levy, L.S. and Djaldetti, M. (1987) *Chromium chloride-induced chromosomal aberrations in human lymphocytes via indirect action.* **Mutat. Res.** 191:207-210.
- Gad, S.C., Powers, W.J., Dunn, B.J., Hoffman, G.M., Siino, K.M. and Walsh, R.D. (1986) *Acute toxicity of four chromate salts*. In: Serrone, D.M., ed. <u>Chromium Symposium 1986: An Update</u>. Pittsburgh, PA: Industrial Health Foundation, Inc., pp. 43-58.
- Glaser, U., Hochrainer, D., Kloppel, H. and Kuhnen, H. (1985) *Low-level chromium (VI) effects on alveolar macrophages and immune functions in Wistar rats.* **Arch. Toxicol.** 57:250-256.
- Lindberg, R.G. and Hedenstierna, L. (1983) *Chrome plating: Symptoms, findings in the upper airways and effects on lung function*. **Arch. Environ. Health** 38:367-374.
- Samitz, M.H. and Shrager, J. (1966) *Patch test reactions to hexavalent and trivalent chromium compounds.* **Arch Dermatol.** 94:304-306.
- U.S. Environmental Protection Agency (U.S. EPA) (1984) <u>Health assessment document for chromium</u>. Final Report EPA-600/8-83-014F. Environ. Criteria and Assessment Office, Res. Triangle Park, N.C.

LEAD

General Background Information

Lead is used extensively in the manufacture of storage batteries and was used in gasoline and paint. Lead is also a natural constituent of many soils, for which concentrations normally range from 10 to 30 mg lead per kilogram of soil (U.S. EPA, 1980).

Pharmacokinetics

Lead can be absorbed by the oral, inhalation or dermal exposure routes (see section on Relative Absorption Factors). Gastrointestinal absorption of lead varies considerably depending upon chemical form, dietary intake, and age (Forbes and Reina, 1974; Barltrop and Meek, 1975). The deposition and absorption of inhaled lead depends upon particle size, chemical form and the rate and depth of breathing (Randall et al., 1975; Nozaki, 1966; Chamberlain et al., 1975). Once absorbed, lead is distributed to the various organs of the body, with most distribution occurring into mineralized tissues (ATSDR, 1990). Placental transfer to the developing fetus is possible (Bellinger et al., 1987). Inorganic lead is not known to be biotransformed within the body. Absorbed lead is excreted via the urinary or fecal routes (ATSDR, 1990)

Human Toxicological Profile

Cases of acute lead poisoning in humans are not common and have not been studied in experimental animals as thoroughly as chronic lead poisoning. Symptoms of acute lead poisoning from deliberate ingestion by humans may include vomiting, abdominal pain, hemolysis, liver damage, and reversible tubular necrosis (U.S. EPA, 1984). Subacute exposures in humans reportedly may produce a variety of neurological effects including dullness, restlessness, irritability, poor attention span, headaches, muscular tremor, hallucinations, and loss of memory. Nortier et al., (1980) report encephalopathy and renal damage to be the most serious complications of chronic toxicity in man and the hematopoietic system to be the most sensitive. For this reason, most data on the effects of lead exposure in humans are based upon blood lead levels. The effects of lead on the formation of hemoglobin and other hemoproteins, causing decreased levels, are reportedly detectable at lower levels of lead exposure than in any other organ system (Betts et al., 1973). Peripheral nerve dysfunction is observed in adults at levels of 30 to 50 μ g/dL-blood. Children's nervous systems are reported to be affected at levels of 15 μ g/dL-blood and higher (Benignus et al., 1981). In high doses, lead compounds may potentially cause abortions, premature delivery, and early membrane rupture (Rom, 1976).

Mammalian Toxicological Profile

Acute oral lethal doses of lead in animals depend upon chemical form, but generally range from 500 to 30,000 mg/kg. Several reproduction studies on the effects of subchronic oral exposure to lead in rats have been conducted (Kimmel et al., 1976; Grant et al., 1980; Fowler et al., 1980). These studies report that lead acetate administered in drinking water at various concentrations caused depressed body weights at 50 and 250 mg-Pb/L water, histological changes in the kidneys of offspring, cytokaryomegaly of the tubular epithelial cells of the inner cortex at concentrations greater than or equal to 25 mg/L and postnatal developmental delays at 50 to 250 mg/L. Higher oral doses of lead may result in decreased fertility and fetotoxic effects in a variety of species (Hilderbrand et al., 1973). A reduction in the number of offspring of rats and mice exposed to 25 mg Pb/L drinking water with a chromium deficient diet was reported by Schroeder et al. (1970). Chronic oral exposure of female Long-Evans rats to lead (5 mg/PB/L-water) reportedly resulted in slight effects on tissue excitability, systolic blood pressure, and cardiac ATP concentrations (Kopp et al., 1980a,b).

Genotoxicity

Results of *in vitro* studies with human lymphocyte cultures using lead acetate were nearly equally positive and negative. Results of in vivo tests are also contradictory but suggest that lead may have an effect on chromosomes (sister chromatid exchange).

Results for gene mutations, DNA modification, and recombinations in various microorganisms using lead acetate, lead nitrate and lead chloride were consistently negative with or without metabolic activation. Lead chloride has been reported to inhibit both DNA and RNA synthesis. In *in vitro* mammalian test systems, lead acetate gave conflicting results.

No epidemiological data regarding the oral carcinogenic potential of lead could be located in the available literature. Chronic inhalation may result in a statistically significant increase in deaths due to tumors in the digestive organs and respiratory systems in lead smelter workers and battery plant workers (Kang et al., 1980). Several studies have reported tumor formation in experimental animals orally administered specific lead salts, not normally ingested by humans (Zawirska and Medras, 1972; Boyland et al., 1962; Ito, 1973). The carcinogenicity of inhaled lead in experimental animals could not be located in the available literature. The U.S. EPA has classified lead and lead compounds as Group B2 - Probable Human Carcinogens.

- Agency for Toxic Substances and Disease Registry (ATSDR) (1990) <u>Toxicological profile for lead</u>. U.S. Public Health Service.
- Barltrop, D. and Meek, F. (1975) Absorption of different lead compounds. Postgrad. Med. J. 51:805-809.
- Bellinger, D.C., Leviton, A., Waternaux, C., Needleman, H. and Rabinowitz, M. (1987) *Longitudinal analyses of prenatal and postnatal lead exposure and early cognitive development*. **N. Engl. J. Med.** 316:1037-1043.
- Benignus, V.A., Otto, D.A., Muller, K.E. and Seiple, K.J. (1981) *Effects of age and body lead burden on CNS function in young children. II: EEG spectra*. **Electroencephalograph. Clin. Neurophysiol.** 52:240-248.
- Betts, P.R., Astley, R. and Raine, R.N. (1973) *Lead intoxication in children in Birmingham.* **Br. Med. J.** 1:402-406.
- Boyland, E., Dukes, C.E., Grover, P.L. and Mitchley, B.C.V. (1962) *The induction of renal tumors by feeding lead acetate to rats.* **Br. J. Cancer** 16:283-288.
- Chamberlain, D. et al. (1975) *Uptake of lead by inhalation of motor exhaust*. **Proc. Roy. Soc. London B.** 192:77-110.
- Forbes, G.B. and Reina, J.C. (1974) *Effect of age on gastrointestinal absorption (Fe, Sr, Pb) in the rat.* **J. Nutr.** 102:647-652.
- Fowler, B.A. et al. (1980) Chronic low level lead toxicity in the rat: III. An integrated assessment of long-term toxicity with special reference to the kidney. **Toxicol. Appl. Pharmacol.** 56:59-77.
- Grant, L.D. et al. (1980) Chronic low-level lead toxicity in the rat: II. Effects on postnatal physical and behavioral development. **Toxicol. Appl. Pharmacol.** 56:42-58.
- Hilderbrand, D.C. et al. (1973) *Effect of lead acetate on reproduction*. **Am. J. Obstet. Gynecol.** 115:1058-1065.

- Ito, N. (1973) Experimental studies on tumors on the urinary system of rats induced by chemical carcinogens. **Acta. Pathol.** (Jap.) 23:87-109.
- Kang, H.D. et al. (1980) Occupational lead exposure and cancer: Letter to the Editor. Science 207:935.
- Kopp, L. et al. (1980a) *Altered metabolism and function of rat heart following chronic low level cadmium/lead feeding*, **J. Mol. Cell. Cardiol.** 12:1407-1425.
- Kopp, L. et al. (1980b) *Cardiac physiological-metabolic changes after chronic low-level heavy metal feeding.* **Am. J. Physiol.** 239:H22-H30.
- Nortier, J.W., Sangster, B. and Van Kestern, R.G. (1980) *Acute lead poisoning with hemolysis and liver toxicity after ingestion of red lead.* **Vet. Hum. Toxicol.** 22:145-147.
- Nozaki, K. (1966) *Method for studies on inhaled particles in human respiratory system and retention of lead fume.* **Ind. Health** (Jap.) 4:118-128.
- Randall, K. et al. (1975) *The effect of particle size on absorption of inhaled lead.* **J. Am. Ind. Hyg. Assoc.** 36:207-213.
- Rom, W.N. (1976) Effects of lead on female reproduction: A review. Mt. Sinai J. Med. 43:542-552.
- Schroeder, P. et al. (1970) Zirconium, niobium, tin, vanadium, and lead in rats: Lifeterm studies. J. Nutr. 100:59-68.
- U.S. Environmental Protection Agency (U.S. EPA) (1980) <u>Ambient water quality criteria document for lead</u>. Office of Regulations and Standards.
- U.S. Environmental Protection Agency (U.S. EPA) (1984) <u>Drinking water criteria document on lead</u> (Quantification of toxicological effects section) Office of Drinking Water.
- Zawirska, B. and Medras, K. (1972) *The role of the kidneys in disorders of porphyrin metabolism during carcinogenesis induced with lead acetate.* **Arch. Immunol. Ther. Exp.** 20:257-272.

MERCURY

General Background Information

Mercury has been used in the past for medicinal purposes (Gosselin et al., 1984). There are a number of occupations associated with mercury exposure, particularly through inhalation. These include mining, smelting, chloralkali production, and the manufacture of mercury-containing products such as batteries, measuring devices (thermometers) and paints. Mercury has also been used agriculturally as a seed and cereal protectant and as a fungicide.

Pharmacokinetics

The pharmacokinetics and pharmacodynamics of mercury depend largely on its chemical form, organic, inorganic or elemental. Absorption efficiencies vary depending on route of exposure and chemical form (see section on Relative Absorption Factors). Distribution, metabolism and excretion depend largely on the lipid solubility, ionization state and molecular size of the specific chemical form (ATSDR, 1989).

Human Toxicological Profile

Exposure to most forms of mercury is associated with a high degree of toxicity. Elemental (metallic) mercury causes behavioral effects and other nervous system damage. Inorganic mercury salts do not generally reach the brain, but will produce kidney damage. Divalent (mercuric) mercury is substantially more toxic in this regard than the monovalent (mercurous) form. Organic mercury compounds are also toxic. Symptoms of chronic mercury poisoning can be both neurological and psychological in nature as the central nervous system is the primary target organ. Hand and finger tremors, slurred or scanning speech patterns, and drunken, stupor-like (ataxic) gait are some motor-control impairments that have been observed in chronic mercurial toxicity. Visual disturbances may also occur, and the peripheral nervous system may be affected. A psychological syndrome known as erethism is know to occur. It is characterized by changes in behavior and personality including depression, fearfulness, restlessness, irritability, irascibility, timidity, indecision, and early embarrassment. Advanced cases may also experience memory loss, hallucination, and mental deterioration.

Mammalian Toxicological Profile

In a study by Mitsumori et al. (1981), male and female mice were fed methyl mercury chloride in their diet for up to 78 weeks. Most of the high dose group died from neurotoxicity before the 26th week. Renal tumors developed in 13 of 16 males in the intermediate dosage group by 53 weeks while only 1 male in the control group developed tumors. No renal tumors occurred in exposed or control females. Studies on rats have reported similar effects such as damage to kidneys and the peripheral nervous system (U.S. EPA, 1980). Mice treated with alkyl mercury phosphate were reported to have an increased frequency of offspring with cleft palates (Oharazawa, 1968) while mice treated with methylmercury had offspring with significantly lowered birth weights and possible neurological damage (Fujita, 1969). No adequate epidemiological studies exist on the teratogenic effects of methylmercury on humans (U.S. EPA, 1980).

Genotoxicity

Skerfving et al. (1974) reported a statistical relationship between chromosome breaks and concentrations of methyl mercury in the blood of Swedish subjects on fish diets. Concentrations were reported to be from 14-116 ng Hg/ml in the blood of exposed subjects and from 3-18 ng/ml in nonexposed subjects.

REFERENCES

- Agency For Toxic Substances and Disease Registry (ATSDR) (1989) <u>Toxicological profile for mercury</u>. U.S. Public Health Service.
- Fujita, E. (1969) Experimental studies on organic mercury poisoning: The behavior of Minamata Disease causal agent in maternal bodies and its transfer to their infants via either placenta or breast milk.

 Jour. Kumanoro Med. Soc. 43:47.
- Gosselin, T.A. et al. (1984) Principles of Clinical Toxicology, Raven Press; New York.
- Mitsumori, K., Maita, K., Saito, T., Tsuda, T. and Shikasu, Y. (1981) *Carcinogenicity of methyl mercury chloride in ICR mice: Preliminary note on renal carcinogens.* **Cancer Lett.** 12:305-310.
- Oharazawa, H. (1968) Chromosomal abnormalities and teratogenesis induced by ethyl mercuric phosphate in pregnant mice. Nippon Sanka-Fujinka Gakk. Zasshi 20:(1) 479.
- Skerfving, S. et al. (1974) Methylmercury-induced chromosome damage in man. Environ. Res. 7:83.
- U.S. Environmental Protection Agency (U.S. EPA) (1980) <u>Ambient water quality criteria for mercury</u>. Office of Water Standards and Regulations. EPA 440/5-80-058.

Source: MADEP Residential Short Form

SELENIUM (CAS No. 7782-49-2)

General Background Information

Selenium occurs in several valence states: -2 (hydrogen selenide, sodium selenide, dimethyl selenium, trimethyl selenium, and selenoamino acids such as selenomethionine; 0 (elemental selenium); +4 (selenium dioxide, selenious acid, and sodium selenite); and +6 (selenic acid and sodium selenate). Toxicity of selenium varies with valence state and water solubility of the compound in which it occurs. The latter can affect gastrointestinal absorption rates.

Selenium is an essential trace element important in many biochemical and physiological processes including the biosynthesis of coenzyme Q (a component of mitochondrial electron transport systems), regulation of ion fluxes across membranes, maintenance of the integrity of keratins, stimulation of antibody synthesis, and activation of glutathione peroxidase (an enzyme involved in preventing oxidative damage to cells). Recommended human dietary allowances (average daily intake) for selenium are as follows: infants up to 1 year, 10-15 μ g; children 1-10 years, 20-30 μ g; adult males 11-51+ years, 40-70 μ g; adult females 11-51+ years, 45-55 μ g; pregnant or lactating women, 65-75 μ g. There appears to be a relatively narrow range between levels of selenium intake resulting in deficiency and those causing toxicity.

Exposure Potential

Gastrointestinal absorption in animals and humans for various selenium compounds ranges from about 44% to 95% of the ingested dose (Thomson and Stewart, 1974; Bopp et al., 1982; Thomson, 1974). Respiratory tract absorption rates of 97% and 94% for aerosols of selenious acid have been reported for dogs and rats, respectively (Weissman et al., 1983; Medinsky et al., 1981). Selenium is found in all tissues of the body; highest concentrations occur in the kidney, liver, spleen, and pancreas (Schroeder and Mitchener, 1971a; Schroeder and Mitchener, 1972; Jacobs and Forst, 1981a; Julius et al., 1983; Shamberger, 1984; Echevarria et al., 1988). Excretion is primarily via the urine (0-15 g/L); however, excretory products can also be found in the feces, sweat, and in expired air.

Human Toxicity

In humans, acute oral exposures can result in excessive salivation, garlic odor to the breath, shallow breathing, diarrhea, pulmonary edema, and death (Civil and McDonald, 1978; Carter, 1966; Koppel et al., 1986). Other reported signs and symptoms of acute selenosis include tachycardia, nausea, vomiting, abdominal pain, abnormal liver function, muscle aches and pains, irritability, chills, and tremors. Acute toxic effects observed in animals include pulmonary congestion, hemorrhages and edema, convulsions, altered blood chemistry (increased hemoglobin and hematocrit); liver congestion; and congestion and hemorrhage of the kidneys (Smith et al., 1937; Anderson and Moxon, 1942; Hopper et al., 1985).

General signs and symptoms of chronic selenosis in humans include loss of hair and nails, acropachia (clubbing of the fingers), skin lesions (redness, swelling, blistering, and ulcerations), tooth decay (mottling, erosion and pitting), and nervous system abnormalities attributed to polyneuritis (peripheral anesthesia, acroparaethesia, pain in the extremities, hyperreflexia of the tendon, numbness, convulsions, paralysis, motor disturbances, and hemiplegia).

In humans, inhalation of selenium or selenium compounds primarily affects the respiratory system. Dusts of elemental selenium and selenium dioxide can cause irritation of the skin and mucous membranes of the nose and throat, coughing, nosebleed, loss of sense of smell, dyspnea, bronchial spasms, bronchitis, and chemical pneumonia (Clinton, 1947; Hamilton, 1949). Other signs and symptoms following acute inhalation exposures include lacrimation, irritation and redness of the eyes, gastrointestinal distress

(nausea and vomiting), depressed blood pressure, elevated pulse rate, headaches, dizziness, and malaise (ATSDR, 1989). Information on toxicity of selenium in humans following chronic inhalation exposures is not available.

Some epidemiologic studies have indicated that selenium may have anti-neoplastic properties (see Whanger, 1983; Hocman, 1988). In studies on laboratory animals, selenites or selenates have not been found to be carcinogenic; however, selenium sulfide produced a significant increase in the incidence of hepatocellular carcinomas in male and female rats and in female mice and a significant increase in alveolar/bronchiolar carcinomas and adenomas in female mice following chronic oral exposures (NCI, 1980c). EPA has placed selenium and selenious acid in Group D, not classifiable as to carcinogenicity in humans (U.S. EPA, 1992a and 1992b), while selenium sulfide is placed in Group B2, probable human carcinogen (U.S. EPA, 1992d). Quantitative data are, however, insufficient to derive a slope factor for selenium sulfide. Pertinent data regarding the potential carcinogenicity of selenium by the inhalation route in humans or animals were not located in the available literature.

Environmental Toxicity

In domesticated animals, subchronic and chronic oral exposures can result in loss of hair, malformed hooves, rough hair coat, and nervous system abnormalities (impaired vision and paralysis). Damage to the liver and kidneys and impaired immune responses have been reported to occur in rodents following subchronic and/or chronic oral exposures (Ganther and Baumann, 1962; Beems and van Beek, 1985; NCI, 1980a; Tinsley et al., 1967; Harr et al., 1967; Schroeder, 1967).

Selenium is teratogenic in birds and possibly also in domesticated animals (pigs, sheep, and cattle), but evidence of teratogenicity in humans and laboratory animals is lacking (ASTDR, 1989). However, adverse reproductive and developmental effects (decreased rates of conception, increased rates of fetal resorption, and reduced fetal body weights) have been reported for domesticated and laboratory animals (Harr and Muth, 1972: Wahlstrom and Olson, 1959; Schroeder and Mitchener, 1971b).

In animals, acute inhalation exposures result in severe respiratory effects including edema, hemorrhage, and interstitial pneumonitis (Hall et al., 1951; Dudley and Miller, 1937) as well as in splenic damage (congestion, fissuring red pulp, and increased polymorphonuclear leukocytes) and liver congestion and mild central atrophy (Hall et al., 1951). Information on toxicity of selenium in animals following chronic inhalation exposures is not available.

MARCH 1993

Edited from the original toxicity profile prepared by: Dennis M. Opresko, Ph.D, Chemical Hazard Evaluation Group, Biomedical Environmental Information Analysis Section, Health and Safety Research Division, Oak Ridge National Laboratory*, Oak Ridge, Tennessee.

Prepared for: Oak Ridge Reservation Environmental Restoration Program.

*Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400.

Appendix B Human Health Risk Characterization Calculations

APPENDIX B TABLE B-1 RISK CHARACTERIZATION SUMMARY TRESPASSERS Former McCoy Field Wetland Area New Bedford, Massachusetts

	Child Ex	cposure	Youth E	xposure	Adult Ex	cposure	Combined Ages
Exposure Pathway	Non-Carcinogenic Hazard Index	Excess Lifetime Cancer Risk	Non-Carcinogenic Hazard Index	Excess Lifetime Cancer Risk	Non-Carcinogenic Hazard Index	Excess Lifetime Cancer Risk	Excess Lifetime Cancer Risk
Soil/Sediment Ingestion	0.2	5E-07	0.05	1E-07	0.03	2E-07	8E-07
Soil/Sediment Dermal Contact	0.08	3E-07	0.02	8E-08	0.01	9E-08	5E-07
Inhalation of Entrained Soil/Sediment Particles	0.0006	4E-10	0.0006	4E-10	0.0006	1E-09	2E-09
Surface Water Ingestion	0.0005	4E-10	0.0002	2E-10	0.0001	3E-10	9E-10
Surface Water Dermal Contact	0.0001	1E-08	0.00009	1E-08	0.00006	2E-08	5E-08
Total (All Pathways)	0.3	9E-07	0.07	2E-07	0.04	3E-07	1E-06
MADEP Maximum Acceptable Level	1.0	1E-05	1.0	1E-05	1.0	1E-05	1E-05

APPENDIX B TABLE B-2 RISK CHARACTERIZATION SOIL INGESTION TRESPASSERS Former McCoy Field Wetland Area New Bedford, Massachusetts

Equation:	ADD =		C _{soll} IR _{soll} RAFO EF ED EP CF BW AP		HQ = HI = Risk =	ADD/RfD Sum [HQ] ADD x SF
	where:	$ADD = C_{soil} = IR_{soil} = IR_{soil} = RAF0 = EF = ED = EP = CF = BW = ED = E$	Average daily dose (mg/kg-dy) Constituent concentration in soil (mg/kg) Soil ingestion rate (kg/dy) Oral relative absorption factor (unitless) Exposure frequency (events/year) Exposure duration (day/event) Exposure period (yr) Unit conversion factor (yr/dy) Body weight (kg)	where:	HQ = HI = Risk = RfD= SF =	Non-carcinogenic hazard quotient (unitless) Total hazard index (unitless) Excess lifetime cancer risk (unitless) Reference dose (mg/kg-dy) Cancer slope factor [(mg/kg-dy) ¹]
		AP =	Averaging period (yr) (nc = non-carcinogen; ca = carcinogen)			

Child	Exposure	fance	1	to 91	

Child Exposure (ages 1 to 8)	ener blocks article co. I	Harris Charles	Last San Paris	Marian Spanish and Lag	ED	EP	CF	BW	AP (nc)	ADD (nc)	RfD	HQ	AP [ca]	_ADD [ca]	SE	Risk
Constituent	Contract	IR _{soll} (kg/đy)	RAFo (unitless)	EF (events/yr)	FE 44-02000 PT 04-03-03-04-04-04-04-04-04-04-04-04-04-04-04-04-	(yr)	Cr (yr/dy)∵	(kg)	AP (IIC)	(mg/kg-dy)	(mg/kg-dy)	(unitless)			(mg/kg-dy) ⁻¹]	Control of the Contro
Abab	(mg/kg)		(unitiess)		(ay/event)				-			1	i			
Acenaphthene	0.191	0.0001	11	80	1	7	2.74E-03	17	<u> </u>	2.46E-07	0.06	0.000004				
Anthracene	0.203	0.0001	1	80	1	7	2.74E-03	17	7	2.62E-07	0.3	0.0000009				
Benzo(a)anthracene	0.255	0.0001	1	80	1	7	2.74E-03	17	7	3.29E-07	0.03	0.00001	70	3.29E-08	0.73	2E-08
Benzo(b)fluoranthene	0.274	0.0001	1	80	1	7	2,74E-03	17	7	3.53E-07	0.03	0.00001	70	3.53E-08	0.73	3E-08
Benzo(k)fluoranthene	0.218	0.0001	1	80	1	7	2.74E-03	17	7	2.81E-07	0.03	0.000009	70	2.81E-08	0.073	2E-09
Benzo(g,h,i)perylene	0.213	0.0001	1	80	1	7	2.74E-03	17	7	2.75E-07	0.03	0.000009				
Benzo(a)pyrene	0.249	0.0001	1	80	1	7	2.74E-03	17	7	3.21E-07	0.03	0.00001	70	3.21E-08	7.3	2E-07
Chrysene	0.246	0.0001	1	80	1	7	2.74E-03	17	7	3.17E-07	0.03	0.00001	70	3.17E-08	0.073	2E-09
Fluoranthene	0.329	0.0001	1	80	1	7	2.74E-03	17	7	4.24E-07	0.04	0.00001			-	
Fluorene	0.191	0.0001	1	80	1	. 7	2.74E-03	17	7	2.46E-07	0.04	0.000006				
Indeno(1,2,3-cd)pyrene	0.208	0.0001	1	80	1	7	2.74E-03	17	7	2.68E-07	0.03	0.000009	70	2.68E-08	0.73	2E-08
Phenanthrene	0.274	0.0001	1	80	1	. 7	2.74E-03	17	7	3.53E-07	0.03	0.00001				
Pyrene	0,351	0.0001	1	80	1	7	2.74E-03	17	7	4.53E-07	0.03	0,00002				
Barium	83	0.0001	1	80	1	7	2.74E-03	17	7	1.07E-04	0.07	0.002				
Cadmium	1.05	0.0001	1	80	1	7	2.74E-03	17	7	1.35E-06	0.001	0.001	<u> </u>		<u></u>	
Chromium (total)	13	0.0001	1	80	1	7	2.74E-03	17	7	1.68E-05	1.5	0.00001				
Lead	98	0.0001	1	80	1	7	2.74E-03	17	7	1.26E-04	0.00075	0.2				
Mercury	0.15	0.0001	1	80	1	7	2,74E-03	17	7	1.93E-07	0.0003	0.0006				
Selenium -	0.92	0.0001	1	80	1	7	- 2.74E-03	17	7	1.19E-06	0.005	0.0002			-	
PCB (Aroclor 1254)	0.908	0.0001	1	80	1	7	2.74E-03	17	7	1.17E-06	0.00002	0.06	70	1.17E-07	2	2E-07
Total									HI =			0.2	Risk =			5E-07

APPENDIX B TABLE B-2 RISK CHARACTERIZATION SOIL INGESTION TRESPASSERS Former McCoy Field Wetland Area New Bedford, Massachusetts

Youth Exposure (ages 8 to 15)

Found Exposure (ages 5 to 25)	of an one brown a section as	Action and and action to the	Market and a Warf of a		nonemotion and another trail	177. Tale 181. ml	14 A			Annual Company of the Company	harana a manada a ma	National Control of the Control of t	And a series has been been been been	Section - Sections	100 A CARCAGO A 4 2000 A CARCAGO	Section Control
Constituent	Ç _{sell}	IR _{soll}	RAFO	EF .	ED	EP :	. CF	BW	AP (nc)	ADD (nc)	RfD	HQ	AP [ca]	ADD [ca]	SF	Risk
	(mg/kg)	(kg/dy)	(unitless)	(events/yr)	(dy/event)	. (уг)	(yr/dy)	(kg)	(yr)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(yr)	(mg/kg-dy)	[(mg/kg-dy) ⁻¹]	(unitiess)
Acenaphthene	0.191	0.00005	1	80	1	7	2.74E-03	39.9	7	5.25E-08	0.06	0.0000009				
Anthracene	0.203	0.00005	1	80	1	7	2.74E-03	39.9	7	5.58E-08	0.3	0.0000002		-		
Benzo(a)anthracene	0.255	0.00005	1	80	1	7	2.74E-03	39.9	7	7.00E-08	0.03	0.000002	70	7.00E-09	0.73	5E-09
Benzo(b)fluoranthene	0.274	0.00005	1	80	1	7	2.74E-03	39.9	7	7.53E-08	0.03	0.000003	70	7.53E-09	0.73	5E-09
Benzo(k)fluoranthene	0.218	0.00005	1	80	1	7	2.74E-03	39.9	7	5.99E-08	0.03	0.000002	70	5.99E-09	0.073	4E-10
Benzo(g,h,i)perylene	0.213	0.00005	1	80	1	7	2.74E-03	39.9	7	5.85E-08	0.03	0.000002		-		
Вепго(а)ругепе	0.249	0.00005	1	80	1	7	2.74E-03	39.9	7	6.84E-08	0.03	0,000002	70	6.84E-09	7.3	5E-08
Chrysene	0.246	0.00005	1	80	1	7	2.74E-03	39.9	7	6.76E-08	0.03	0.000002	70	6.76E-09	0.073	5E-10
Fluoranthene	0.329	0.00005	1	80	1	7	2.74E-03	39.9	7	9.04E-08	0.04	0.000002				
Fluorene	0.191	0.00005	1	80	1	7	2.74E-03	39.9	7	5.25E-08	0.04	0.000001		-		
Indeno(1,2,3-cd)pyrene	0.208	0.00005	1	80	1	7	2,74E-03	39.9	7	5.71E-08	0.03	0.000002	70	5.71E-09	0.73	4E-09
Phenanthrene	0.274	0.00005	1	80	1	7	2.74E-03_	39.9	7	7.53E-08	0.03	0.000003				
Pyrene	0.351	0.00005	1	80	1	7	2.74E-03	39.9	7	9.64E-08	0.03	0.000003				
Barium	83	0.00005	1	80	1	7	2.74E-03	39.9	7	2,28E-05	0.07	0.0003				
Cadmium	1.05	0.00005	1	80	1	7	2.74E-03	39.9	7	2.88E-07	0.001	0.0003				-
Chromium (total)	13	0.00005	1	80	1	7	2.74E-03	39.9	7	3.57E-06	1.5	0.000002				
Lead	98	0.00005	1	80	1	7	2.74E-03	39.9	7	2.69E-05	0.00075	0.04			-	
Mercury	0.15	0.00005	1	80	1	7	2.74E-03	39.9	7	4.12E-08	0.0003	0.0001				
Selenium	0.92	0.00005	1	80	1	7	2.74E-03	39.9	7	2.53E-07	0.005	0.00005				L
PCB (Aroclor 1254)	0.908	0.00005	1	80	1	7	2.74E-03	39.9	7	2.49E-07	0.00002	0.01	70	2.49E-08	2	5E-08
Total									HI =			0.05	Risk =			1E-07

Adult Exposure (ages 15 to 31)

Constituent	Cool	IR, all	RAFo	EF	ED	EP.	CF.	BW	AP (nc)	ADD (nc)	RfD	HQ	AP [ca]	ADD [ca]	SF	Risk
	(mg/kg)	(kg/dy)	(unitless)	(events/yr)	(dy/event)	(уг)	(yr/dy)	(kg)	(yr)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(уг)	(mg/kg-dy)	[(mg/kg-dy) ¹]	(unitless)
Acenaphthene	0.191	0.00005	1	80	1	16	2.74E-03	58.7	16	3.57E-08	0.06	0.0000006		-		_
Anthracene	0.203	0.00005	1	80	1.	16	2.74E-03	58.7	16	3.79E-08	0.3	0.0000001	-		-	-
Benzo(a)anthracene	0.255	0.00005	1	80	1	16	2.74E-03	58.7	16	4.76E-08	0.03	0.000002	70	1.09E-08	0.73	8E-09
Benzo(b)fluoranthene	0.274	0.00005	1	. 80	1	16	2.74E-03	58.7	16	5.12E-08	0.03	0.000002	70	1.17E-08	0.73	9E-09
Benzo(k)fluoranthene	0.218	0.00005	1	80	1	16	2.74E-03	58.7	16	4.07E-08	0.03	0.000001	70	9.30E-09	0.073	7E-10
Benzo(g,h,i)perylene	0.213	0.00005	1	80	1	16	2.74E-03	58.7	16	3.98E-08	0.03	0.000001	-		-	
Benzo(a)pyrene	0.249	0.00005	1	80	1	16	2.74E-03	58.7	16	4.65E-08	0.03	0.000002	70	1.06E-08	7.3	8E-08
Chrysene	0.246	0.00005	1	80	1	16	2.74E-03	58.7	16	4.59E-08	0.03	0.000002	70	1.05E-08	0.073	8E-10
Fluoranthene	0.329	0.00005	1	80	1	16	2.74E-03	58.7	16	6.14E-08	0.04	0.000002	-	_		
Fluorene	0.191	0.00005	1	80	1	16	2.74E-03	58.7	16	3.57E-08	0.04	0.0000009	1	_	-	-
Indeno(1,2,3-cd)pyrene	0.208	0.00005	1	80	1	16	2.74E-03	58.7	16	3.88E-08	0.03	0.000001	70	8.88E-09	0.73	6E-09
Phenanthrene	0.274	0.00005	1	80	1	16	2.74E-03	58.7	16	5.12E-08	0.03	0.000002	-	-	-	
Pyrene	0.351	0.00005	1	80	1	16	2.74E-03	58.7	16	6.55E-08	0.03	0.000002		_		
Barium	83	0.00005	1	80	1	16	2.74E-03	58.7	16	1.55E-05	0.07	0.0002		-		
Cadmium	1.05	0.00005	1	80	1 -	16	2.74E-03	58.7	16	1.96E-Q7	0.001	0.0002			-	
Chromium (total)	13	0.00005	1	80	1	16	2.74E-03	58.7	16	2.43E-06	1.5	0.000002	-			
Lead	98	0.00005	1	80	1	16	2.74E-03	58.7	16	1.83E-05	0.00075	0.02	_			
Mercury	0.15	0.00005	1	80	1	16	2.74E-03	58.7	16	2,80E-08	0.0003	0.00009	_			_
Selenium	0.92	0.00005	1	80	1	16	2.74E-03	58.7	16	1.72E-07	0.005	0.00003	-			
PCB (Aroclor 1254)	0.908	0.00005	1	80	1	16	2.74E-03	58.7	16	1.70E-07	0.00002	0.008	70	3.87E-08	2	8E-08
Total									HI =	·		0.03	Risk =			2E-07

Combined ages (1 to 31)

Total Risk

8E-07

APPENDIX B TABLE B-3 RISK CHARACTERIZATION SOIL DERMAL CONTACT TRESPASSERS Former McCoy Field Wetland Area New Bedford, Massachusetts

Equation: ADD = C_poil SA AF RAFd EF ED EP CF HQ = ADD / RfD

BW AP HI = Sum [HQ]

Risk = ADD x SF

where: ADD = Average daily dose (mg/kg-dy) where: HQ = Non-carcinogenic hazard quotient (unitiess) Constituent concentration in soil (mg/kg) $C_{soli} =$ SA = Exposed skin surface area (cm²/dy) HI = Total hazard index (unitiess) AF = Soil adherence factor (kg/cm²) Risk = Excess lifetime cancer risk (unitless) RfD= Reference dose (mg/kg-dy) Dermal relative absorption factor (unitless) RAFd =

EF = Exposure frequency (events/yr) SF = Cancer slope factor [(mg/kg-dy)⁻¹]

ED = Exposure duration (day/event)

EP = Exposure period (yr)

BW = Body weight (kg)
AP = Averaging period (yr) (nc = non-carcinogen; ca = carcinogen)

Unit conversion factor (yr/dy)

CF =

hild Evnosure (ares 1 to 8)

Child Exposure (ages 1 to 8)									,	,							
Constituent	C ₅₀₁ .	SA	AF	RAFd	F EF	ED	EP.	CF	BW	AP (nc)	ADD (nc)	RfD	HQ	AP [ca]	ADD [ca]	SF	Risk
	(mg/kg)	(cm²/dy)	/(kg/cm²)	(unitless)	(events/yr)	(dy/event)	(yr)	(yr/dy)	(kg)	(yr)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(yr)	(mg/kg-dy)	[(mg/kg-dy) ⁻¹]	(unitless)
Acenaphthene	0.191	1,351	5.2E-07	0,1	80	1	7	2.74E-03	17	7	1.73E-07	0.06	0.000003				
Anthracene	0.203	1,351	5.2E-07	0.1	80	1	7	2.74E-03	17	7	1.84E-07	0.3	0.0000006				
Benzo(a)anthracene	0.255	1,351	5.2E-07	0.02	80	1	7	2.74E-03	17	7	4.62E-08	0.03	0.000002	70	4.62E-09	0.73	3E-09
Benzo(b)fluoranthene	0.274	1,351	5.2E-07	0.02	80	1	7	2.74E-03	17	7	4.96E-08	0.03	0,000002	70	4.96E-09_	0.73	4E-09
Benzo(k)fluoranthene	0.218	1,351	5.2E-07	0.02	80	1	7	2.74E-03	17	7	3.95E-08	0.03	0.000001	70	3.95E-09	0.073	3E-10
Benzo(g,h,i)perylene	0.213	1,351	5.2E-07	0.1	80	1	7	2.74E-03	17	7	1.93E-07	0.03	0.000006				
Benzo(a)pyrene	0.249	1,351	5.2E-07	0.02	80	1	7	2.74E-03	17	7	4.51E-08	0.03	0.000002	70	4.51E-09	7.3	3E-08
Chrysene	0.246	1,351	5.2E-07	0.02	80	1	7	2.74E-03	17	7	4.46E-08	0.03	0.000001	70	4.46E-09	0.073	3E-10
Fluoranthene	0.329	1,351	5.2E-07	0.1	80	1	. 7	2.74E-03	17	7	2.98E-07	0.04	0.000007				
Fluorene	0.191	1,351	5.2E-07	0.1	80	1	7	2.74E-03	17	7	1.73E-07	0.04	0.000004		 .		
Indeno(1,2,3-cd)pyrene	0.208	1,351	5.2E-07	0.02	80	1	7	2.74E-03	17	7	3.77E-08	0.03	0.000001	70	3.77E-09	0.73	3E-09
Phenanthrene	0.274	1,351	5.2E-07	0.1	80	1	7	2.74E-03	17	7	2.48E-07	0.03	0.000008				
Pyrene	0.351	1,351	5.2E-07	0.1	80	1	7	2.74E-03	17	. 7	3.18E-07	0.03	0.00001				
Barium	83	1,351	5.2E-07	0.05	80	1	7	2.74E-03	17	7	3.76E-05	0.07	0.0005				
Cadmium	1.05	1,351	5.2E-07	0.14	80	1	7	2.74E-03	17	7	1.33E-06	0.001	0.001			-	
Chromium (total)	13	1,351	5.2E-07	0.04	80	1	7	2.74E-03	17	7	4.71E-06	1.5	0.000003		-		
Lead	98	1,351	5.2E-07	0.006	80	1	7	2.74E-03	17	7	5.33E-06	0.00075	0.007				
Mercury	0.15	1,351	5.2E-07	0.05	80	1	7	2.74E-03	17	7	6.79E-08	0.0003	0.0002				
Selenium	0.92	1,351	5.2E-07	0.002	80	1	7	2.74E-03	17	7	1.67E-08	0.005	0.000003				
PCB (Aroclor 1254)	0.908	1,351	5.2E-07	0.16	80	1	7	2.74E-03	17	7	1.32E-06	0.00002	0.07	70	1,32E-07	2	3E-07
Total										HI =			0.08	Risk =			3E-07

APPENDIX B TABLE B-3 RISK CHARACTERIZATION SOIL DERMAL CONTACT TRESPASSERS Former McCoy Field Wetland Area New Bedford, Massachusetts

Youth Exposure (ages 8 to 15)

Constituent	C.,	SA	AF	RAFd	ASSET A	: ED	EP .	CF	ВW	AP (nc)	ADD (nc)	RfD	но	AP [ca]	ADD [ca]	SF	Risk
Constituent	(mg/kg)			2000	(events/yr)	149146 50 February Colorest 1	(yr)	(yr/dy)	(kg)	(yr)		(mg/kg-dy)	4,10,124,44,788,804	(yr)		[(mg/kg-dy) ⁻¹]	(unitless)
Acenaphthene	0.191	2,928	1.4E-07	0.1	80	1	7	2.74E-03	39.9	7	4.30E-08	0.06	0.0000007		-		-
Anthracene	0.203	2,928	1.4E-07	0.1	80	1	7	2,74E-03	39.9	7	4.57E-08	0.3	0.0000002			·	
Benzo(a)anthracene	0.255	2,928	1.4E-07	0.02	80	1	7	2.74E-03	39.9	7	1.15E-08	0.03	0.0000004	70	1.15E-09	0.73	8E-10
Benzo(b)fluoranthene	0.274	2,928	1.4E-07	0.02	80	1	7	2.74E-03	39.9	7	1.23E-08	0.03	0.0000004	70	1.23E-09	0.73	9E-10
Benzo(k)fluoranthene	0.218	2,928	1.4E-07	0.02	80	1	7	2.74E-03	39.9	7	9.82E-09	0.03	0.0000003	70	9.82⋶-10	0.073	7E-11
Benzo(g,h,i)perylene	0.213	2,928	1.4E-07	0.1	80	1	7	2.74E-03_	39.9	7	4.80E-08	0.03	0.000002				
Benzo(a)pyrene	0.249	2,928	1.4E-07	0.02	80	1	7	2.74E-03	39.9	7	1.12E-08	0.03	0.0000004	70	1.12E-09	7.3	8E-09
Chrysene	0.246	2,928	1.4E-07	0.02	80	1	7	2.74E-03	39.9	7	1.11E-08	0.03	0.0000004	70	1.11E-09	0.073	8E-11
Fluoranthene	0.329	2,928	1,4E-07	0.1	80	1	. 7	2.74E-03	39.9	7	7.41E-08	0.04	0.000002				
Fluorene	0.191	2,928	1.4E-07	0.1	80	1	7	2.74E-03	39.9	7	4.30E-08	0.04	0.000001				
Indeno(1,2,3-cd)pyrene	0.208	2,928	1.4E-07	0.02	80	1	7	2.74E-03	39.9	7	9.37E-09	0.03	0.0000003	70	9.37E-10	0.73	7E-10
Phenanthrene	0.274	2,928	1.4E-07	0.1	80	1	. 7	2,74E-03	39.9	7	6.17E-08	0.03	0.000002				
Pyrene	0.351	2,928	1.4E-07	0.1	80	1	7	2.74E-03	39.9	7	7.90E-08	0.03	0.000003				
Barium	83	2,928	1.4E-07	0.05	80	1	7 .	2.74E-03	39.9	7	9.34E-06	0.07	0.0001				
Cadmium	1.05	2,928	1.4E-07	0.14	80	1	7	2.74E-03	39.9	7	3.31E-07	0.001	0.0003				
Chromium (total)	13	2,928	1.4E-07	0.04	80	1	7	2.74E-03	39.9	7	1.17E-06	1.5	80000000				
Lead	98	2,928	1.4E-07	0.006	80	1	7	2.74E-03	39.9	7	1.32E-06	0.00075	0.002	-			
Mercury	0.15	2,928	1.4E-07	0.05	80	1	7	2.74E-03	39.9	7	1,69E-08	0.0003	0.00006				
Selenium	0.92	2,928	1.4E-07	0.002	80	1	7	2.74E-03	39.9	7	4.14E-09	0.005	8000000.0				
PCB (Aroclor 1254)	0.908	2,928	1.4E-07	0.16	80	1	7	2.74E-03	39.9	7	3.27E-07	0.00002	0.02	70	3.27E-08	2	7E-08
Total										HI =			0.02	Risk =			8E-08

Adult Exposure (ages 15 to 31)

Constituent	Csoll	SA	AF	RAFd	EF	ED	EP	CF	BW	AP (nc)	ADD (nc)	RfD	HQ	AP [ca]	ADD [ca]	SF	Risk
	(mg/kg)	(cm²/dy)	(kg/cm²)	(unitless)	(events/yr)	(dy/event)	(уг)	(yr/dy)	. (kg)	(yr)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(yr) ·	(mg/kg-dy)	[(mg/kg-dy) ⁻¹]	(unitless)
Acenaphthene	0.191	3,107	1.0E-07	0.1	80	11	16	2.74E-03	58.7	16	2.22E-08	0.06	0.0000004		-		
Anthracene	0.203	3,107	1.0E-07	0,1	80	1	16	2.74E-03	58.7	16	2.36E-08	0.3	800000008		-		-
Benzo(a)anthracene	0.255	3,107	1.0E-07	0.02	80	1	16	2.74E-03	58.7	16	5.92E-09	0.03	0.0000002	70	1.35E-09	0.73	1E-09
Benzo(b)fluoranthene	0.274	3,107	1.0E-07	0.02	80	1	16	2,74E-03	58.7	16	6.36E-09	0.03	0.0000002	70	1.45E-09	0.73	1E-09
Benzo(k)fluoranthene	0.218	3,107	1.0E-07	0.02	80	1	16	2.74E-03	58.7	16	5.06E-09	0.03	0.0000002	70	1.16E-09	0.073	8E-11
Benzo(g,h,i)perylene	0.213	3,107	1.0E-07	0.1	80	. 1	16	2.74E-03	58.7	16	2.47E-08	0.03	0.0000008				
Benzo(a)pyrene	0.249	3,107	1.0E-07	0.02	80	1	16	2.74E-03	58.7	16	5.78E-09	0.03	0.0000002	70	1.32E-09	7.3	1E-08
Chrysene	0.246	3,107	1.0E-07	0.02	80	1	16	2.74E-03	58.7	16	5.71E-09	0.03	0.0000002	70	1,30E-09	0.073	1E-10
Fluoranthene	0.329	3,107	1.0E-07	0.1	80	1	16	2.74E-03	58.7	16	3.82E-08	0.04	0.000001				
Fluorene	0.191	3,107	1.0E-07	0.1	80	1	16	2.74E-03	58.7	16	2.22E-08	0.04	0.0000006				
Indeno(1,2,3-cd)pyrene	0.208	3,107	1.0E-07	0.02	80	1	16	2.74E-03	58.7	16	4.83E-09	0.03	0.0000002	70	1.10E-09	0.73	8E-10
Phenanthrene	0.274	3,107	1.0E-07	0.1	80	1	16	2.74E-03	58.7	16	3.18E-08_	0.03	0.000001		<u>-</u> .		
Pyrene	0.351	3,107	1.0E-07	0.1	80	1	16	2.74E-03	58.7	16	4.07E-08	0.03	0.000001				
Barium	83	3,107	1.0E-07	0.05	80	1	16	2.74E-03	58.7	16	4.81E-06	0.07	0.00007				
Cadmium	1.05	3,107	1.0E-07	0.14	80	1	16	2.74E-03	58.7	16	1.71É-07	0.001	0.0002				
Chromium (total)	13	3,107	1.0E-07	0.04	80	1	16	2.74E-03	58.7	16	6.03E-07	1.5	0.0000004				
Lead	98	3,107	1.0E-07	0.006	80	1	16	2.74E-03	58.7	16	6.82E-07	0.00075	0.0009				
Mercury	0.15	3,107	1.0E-07	0.05	80	1	16	2.74E-03	58.7	16	8.70E-09	0.0003	0.00003				
Selenium	0.92	3,107	1.0E-07	0.002	80	1	16	2.74E-03	58.7	16	2.13E-09	0.005	0.0000004		-		
PCB (Aroclor 1254)	0.908	3,107	1.0E-07	0.16	80	1	16	2.74E-03	58.7	16	1.69E-07	0.00002	800.0	70	3.85E-08	2	8E-08
Total										HI =		•	0.01	Risk =			9E-08

Combined ages (1 to 31)

Total Risk

5E-07

APPENDIX B TABLE B-4 RISK CHARACTERIZATION INHALATION OF ENTRAINED SOIL PARTICLES TRESPASSERS Former McCoy Field Wetland Area New Bedford, Massachusetts

	C _{atr} =	C _{sell} x PM ₁₀ x CF		HQ =	ADE/ RfC
	ADE =	Cair x EF x ED x EP x CF / AP		HI =	Sum [HQ]
				Risk =	ADE x UR
where:	C _{alr} =	Constituent concentration in ambient air (mg/m³)			
	C _{soll} =	Constituent concentration in soil (mg/kg)	where:	HQ =	Non-carcinogenic hazard quotient (unitiess)
	PM ₁₀ =	Particulate matter concentration in air (= 10 microns) (mg/m³)</td <td></td> <td>HI =</td> <td>Total hazard index (unitless)</td>		HI =	Total hazard index (unitless)
	CF =	Unit conversion factor (kg/mg)		RfC=	Reference concentration (mg/m³)
	ADE =	Average daily exposure (mg/m³)		Risk =	Excess lifetime cancer risk (unitless)
	EF =	Exposure frequency (events/yr)		UR =	Unit risk value [(mg/m³) ⁻¹]
	ED =	Exposure duration (hr/event)			
	EP =	Exposure period (yr)			
	CF =	Unit conversion factor (yr/hr)			
	AP =	Averaging period (yr) (nc = non-carcinogen; ca = carcinogen)			

Child Exposure (ages 1 to 8)

Crilia Exposure (ages 1 to 8)																T
Constituent	C	PM ₁₀	CF/	∕ C _{ab}	. EF	ED.	EP	CF	AP (nc)	ADE (nc)	RfC	HQ -	AP [ca]	ADE [ca]	UR	Risk
	(mg/kg)	(mg/m³)	(kg/mg)	(mg/m³)	(events/yr)	(hr/event)	ं (yr)′ः ः	(yr/hr)	(yr)	(mg/m³)	(mg/m³)	(unitless)	(уг)	(mg/m³)	[(mg/m³) ⁻¹	(unitless)
Acenaphthene	0.191	0.032	1.00E-06	6.11E-09	80	5.6	7	1.14E-04	7	3.13E-10	0.05	0.000000006			<u> </u>	
Anthracene	0.203	0.032	1.00E-06	6.50E-09	80	5.6	7	1.14E-04	7	3.32E-10	0.05	0.000000007		-		
Benzo(a)anthracene	0.255	0.032	1.00E-06	8.16E-09	80	5,6	7	1.14E-04	7	4.17E-10	0.05	0.000000008	70	4.17E-11	0.21	9E-12
Benzo(b)fluoranthene	0.274	0.032	1.00E-06	8.77E-09	80	5.6	7	1.14E-04	7.	4.48E-10	0.05	0,000000009	70	4.48E-11	0.21	9E-12
Benzo(k)fluoranthene	0.218	0.032	1.00E-06	6.98E-09	80	5.6	. 7	1.14E-04		3.57E-10	0.05	0.000000007	70	3,57E-11	0.021	7E-13
Benzo(g,h,i)perylene	0.213	0.032	1.00E-06	6.82E-09	80	5.6	7	1.14E-04		3.49E-10	0.05	0.000000007		-		
Benzo(a)pyrene	0.249	0.032	1,00E-06	7.97E-09	80	5.6	7	1.14E-04		4.07E-10	0.05	0.000000008	70	4.07E-11	2.1	9E-11
Chrysene	0.246	0.032	1.00E-06	7.87E-09	80	5.6	. 7	1.14E-04	7	4.03E-10	0.05	0.000000008	70	4.03E-11	0.021	8E-13
Fluoranthene	0.329	0.032	1.00E-06	1.05E-08	80	5.6	7	1.14E-04	7	5.38E-10	0.05	0.00000001				
Fluorene	0.191	0.032	1.00E-06	6.11E-09	80	5.6	7	1.14E-04	7	3.13E-10	0.05	0.000000006				
Indeno(1,2,3-cd)pyrene	0,208	0.032	1.00E-06	6.66E-09	80	5.6	7	1.14E-04	7	3.40E-10	0.05	0.000000007	70	3.40E-11	0.21	7E-12
Phenanthrene	0.274	0.032	1.00E-06	8.77E-09	80	5.6	7	1.14E-04	7	4.48E-10	0.05	0.000000009			-	
Pyrene	0.351	0.032	1.00E-06	1.12E-08	80	5,6	7	1.14E-04	7	5.74E-10	0.05	0.00000001			-	
Barium	83	0.032	1.00E-06	2.66E-06	80	5.6	7	1.14E-04	7	1.36E-07	0.0005	0,0003				
Cadmium	1.05	0.032	1,00E-06	3,36E-08	80	5.6	7	1.14E-04	7	1.72E-09	0,00002	0.00009	70	1.72E-10	1.8	3E-10
Chromium (total)	13	0.032	1.00E-06	4.16E-07	80	5.6	7	1.14E-04	7	2.13E-08	5	0.000000004				
Lead	98	0.032	1.00E-06	3.14E-06	80	5.6	7	1.14E-04	7	1.60E-07	0.001	0.0002				<u> </u>
Mercury	0.15	0.032	1.00E-06	4.80E-09	80	5.6	7	1.14E-04	7	2.45E-10	0.0003	0.0000008				
Selenium	0.92	0.032	1.00E-06	2.94E-08	80	5.6	7	1.14E-04	7	1.51E-09	0.003	0.0000005				
PCB (Arocior 1254)	0.908	0.032	1.00E-06	2.91E-08	80	5.6	7	1.14E-04	7	1.49E-09	0.00002	0.00007	70	1.49E-10	0.1	1E-11
Total									HI =			0.0006	Risk =			4E-10

APPENDIX B TABLE B-4 RISK CHARACTERIZATION INHALATION OF ENTRAINED SOIL PARTICLES TRESPASSERS TRESPASSERS

Former McCoy Field Wetland Area New Bedford, Massachusetts

Youth Exposure (ages 8 to 15)

Youth Exposure (ages 8 to 15)													Land Company	of and the second section of the second	Contract of the second	Section for the section of the period of
Constituent	C _{soff}	PM ₁₀	CF CF	C _{ak}	EF	z ED	EP	CF.	AP (nc)	ADE (nc)	RfC	HQ	AP [ca]	ADE [ca]	UR .	Risk
	(mg/kg)	(mg/m³)	(kg/mg)	_ (mg/m³)	(events/yr)	(hr/event)	(yr) · · ·	(yr/hr)	(yr)	(mg/m³)	(mg/m³)	(unitless)	(ут)	(mg/m²)	[(mg/m³) ⁻]	(unitless)
Acenaphthene	0.191	0,032	1.00E-06	6.11E-09	80	5,6	7	1.14E-04	7	3.13E-10	0.05	0.000000006				
Anthracene	0.203	0.032	1,00E-06	6.50E-09	80	5.6	7	1.14E-04	7	3.32E-10	0,05	0.000000007				
Benzo(a)anthracene	0,255	0.032	1.00E-06	8.16E-09	80	5.6	7	1.14E-04	. 7	4.17E-10	0.05	0.000000008	70	4.17E-11	0.21	9E-12
Benzo(b)fluoranthene	0.274	0.032	1.00E-06	8.77E-09	80	5.6	7	1.14E-04		4.48E-10	0.05	0.000000009	70	4.48E-11	0.21	9E-12
Benzo(k)fluoranthene	0.218	0.032	1.00E-06	6.98E-09	80	5,6	7	1.14E-04	7	3.57E-10	0.05	0.000000007	70	3.57E-11	0.021	7E-13
Benzo(g,h,l)perylene	0.213	0.032	1.00E-06	6.82E-09	80	5.6	7	1.14E-04	7	3.49E-10	0.05	0.000000007				
Benzo(a)pyrene	0.249	0,032	1.00E-06	7.97E-09	80	5.6	. 7	1.14E-04	7	4.07E-10	0.05	0.000000008	70	4.07E-11	2.1	9E-11
Chrysene	0.246	0.032	1.00E-06	7.87E-09	80	5.6	7	1.14E-04	. 7	4.03E-10	0.05	0.000000008	70	4.03E-11	0.021	8E-13
Fluoranthene	0,329	0.032	1.00E-06	1.05E-08	80	5.6	7	1.14E-04	7	5,38E-10	0.05	0.00000001				
Fluorene	0.191	0.032	1.00E-06	6.11E-09	80	5.6	7	1.14E-04	7	3.13E-10	0.05	0.000000006				
Indeno(1,2,3-cd)pyrene	0.208	0.032	1.00E-06	6.66E-09	80	5.6	7	1.14E-04	. 7	3.40E-10	0.05	0.000000007	70	3.40E-11	0.21	7E-12
Phenanthrene	0.274	0.032	1.00E-06	8.77E-09	80	5.6	7	1.14E-04	7	4.48E-10	0.05	0.000000009				
Pyrene	0.351	0.032	1.00E-06	1.12E-08	80	5.6	7	1,14E-04	7	5.74E-10	0.05	0.00000001				
Barlum	83	0.032	1.00E-06	2.66E-06	80	5.6	7	1.14E-04	7	1.36E-07	0.0005	0,0003				
Cadmium	1.05	0.032	1.00E-06_	3,36E-08_	80	5.6	.7	1.14E-04	7	1.72E-09	0.00002	0,00009	70	1.72E-10	1.8	3E-10
Chromium (total)	13	0.032	1.00E-06	4.16E-07	80	5.6	_ 7	1.14E-04	7	2.13E-08	5	0.000000004			-	
Lead	98	0.032	1.00E-06	3.14E-06	80	5.6	7	1.14E-04	7	1.60E-07	0.001	0.0002				
Mercury	0.15_	0.032	1.00E-06	4.80E-09	80	5.6	7	1.14E-04	.7	2,45E-10	0.0003	0.0000008				
Selenium	0.92	0.032	1.00E-06	2.94E-08	80	5.6	7	1.14E-04	7	1.51E-09	0.003	0,0000005				
PCB (Aroclor 1254)	0.908	0.032	1.00E-06	2.91E-08	80	5.6	7	1.14E-04_	7	1.49E-09	0.00002	0.00007	70	1.49E-10	1.0	1E-11
Total									HI =			0.0006	Risk =			4E-10

Hulb	Exposure	/anne	15	+-	711	r
·uun	exposure	(ayes	73	w	31	,

Addit Exposure (ages 15 to 51)		and the second second				CONTRACTOR AND DESCRIPTION OF	towarders and entire	200.00 21.00	77.77.57.28.28.24.24.	100000000000000000000000000000000000000	networks perfore	PROTECTION OF STREET	100000	2012/2014/114-0	2000 C 00000	Risk
Constituent	C _{soll}	PM ₁₀	. CF	C	EF.	ED	EP .	CF	AP_(nc)	ADE (nc)	RfC	нQ	AP [ca]	ADE [ca]	UR .	The second of th
	(mg/kg)	(mg/m³)	(kg/mg)	(mg/m³)	(events/yr)	: (hr/event)	(yr) <u> </u>	(yr/hr)	∞ (уг)~	(mg/m³)	(mg/m³)	(unitless)	(yr)	(mg/m²)	((mg/m²) <	(unitless)
Acenaphthene	0.191	0.032	1.00E-06	6.11E-09	80	5.6	16	1.14E-04	16	3.13E-10	0.05	0.000000000				
Anthracene	0.203	0.032	1.00E-06	6.50E-09	80	5.6	16	1.14E-04	16	3.32E-10	0.05	0.000000007_				
Benzo(a)anthracene	0.255	0.032	1.00E-06	8.16E-09	80	5.6	16	1.14E-04	16	4.17E-10	0.05	8000000000	70	9.54E-11	0.21	2.0031E-11
Benzo(b)fluoranthene	0.274	0.032	1.00E-06	8.77E-09	80	5.6	16	1.14E-04	16	4.48E-10_	0.05	0.000000009	70	1.02E-10	0.21	2E-11
Benzo(k)fluoranthene	0.218	0,032	1.00E-06	6,98E-09	80	5.6	16	1.14E-04	16	3.57E-10	0.05	0.000000007	70	8,15E-11	0.021	2E-12
Benzo(g,h,i)perylene	0,213	0.032	1.00E-06	6.82E-09	80	5.6	16	1.14E-04	16	3.49E-10	0.05	0.000000007		<u></u>		<u> </u>
Benzo(a)pyrene	0.249	0,032	1.00E-06	7.97E-09	80	5.6	16	1.14E-04	16	4.07E-10	0.05	0.000000008	70	9.31E-11	2.1	2E-10
Chrysene	0.246	0.032	1.00E-06	7.87E-09	80	5.6	16	1.14E-04	16	4.03E-10	0.05	800000000.0	70	9.20E-11	0.021	2E-12
Fluoranthene	0.329	0,032	1.00E-06	1.05E-08	80	5.6	16	1.14E-04	16	5.38E-10	0.05	0.00000001				
Fluorene	0.191	0.032	1.00E-06	6.11E-09	80	5,6	16	1.14E-04	16	3.13E-10	0.05	0.000000006				
Indeno(1,2,3-cd)pyrene	0.208	0.032	1.00E-06	6.66E-09	80	5.6	16	1.14E-04	16	3,40E-10	0.05	0.000000007	70	7.78E-11	0.21	2E-11
Phenanthrene	0.274	0.032	1.00E-06	8.77E-09	80	5.6	16	1.14E-04	16	4.48E-10	0.05	0.000000009				
Pyrene	0.351	0.032	1.00E-06	1.12E-08	80	5.6	16	1.14E-04	16	5.74E-10	0.05	0.00000001	<u> </u>			
Barlum	83	0.032	1.00E-06	2.66E-06	80	5.6	16	1.14E-04	16	1.36E-07	0.0005	0.0003				
Cadmium	1.05	0.032	1.00E-06	3.36E-08	80	5.6	16	1.14E-04	16	1.72E-09	0,00002	0.00009	70	3.93E-10	1.8	7E-10
Chromium (total)	13	0.032	1.00E-06	4.16E-07	80	5.6	16	1.14E-04	16	2.13E-08	5	0.000000004				1
Lead	98	0.032	1.00E-06	3.14E-06	80	5.6	16	1.14E-04	16	1.60E-07	0.001	0.0002				
Mercury	0.15	0.032	1.00E-06	4.80E-09	80	5.6	16	1.14E-04	16	2.45E-10	0.0003	8000000.0			<u> </u>	
Selenium	0.92	0.032	1.00E-06	2.94E-08	80	5.6	16	1.14E-04	16	1.51E-09	0.003	0.0000005				
PCB (Aroclor 1254)	0.908	0.032	1.00E-06	2.91E-08	80	5.6	16	1.14E-04	16	1.49E-09	0.00002	0.00007	70	3.40E-10	0.1	3E-11
Total												0.0006	Risk =			1E-09

Combined Ages (1 to 31) Total Risk

2E-09

APPENDIX B TABLE B-7 RISK CHARACTERIZATION SURFACE WATER INGESTION TRESPASSERS Former McCoy Field Wetland Area New Bedford, Massachusetts

ADD/RfD Csw IRsw RAFO EF ED EP CF HQ = Equation: ADD = BW AP HI = Sum [HQ] Risk = ADD x SF ADD = Average daily dose (mg/kg-dy) where: HQ = Non-carcinogenic hazard quotient (unitless) $C_{sw} =$ Constituent concentration in surface water (mg/L) Total hazard index (unitless) Surface water ingestion rate (L/dy) HI = IR_{sw} = Excess lifetime cancer risk (unitless) RAFo = Oral relative absorption factor (unitless) Risk = Reference dose (mg/kg-dy) Exposure frequency (events/year) RfD= EF = Cancer slope factor [(mg/kg-dy)-1] SF = ED = Exposure duration (day/event) Exposure period (yr) EP =

BW = Body weight (kg)
AP = Averaging period (yr) (nc = non-carcinogen; ca = carcinogen)

Unit conversion factor (yr/dy)

CF =

Child	Exposure (anec	1	to 8	١

Constituent Compg	/L)	IR _{SW} (L/dy) 0.05 0.05 0.05 0.05	RAFo (unitless) 1 1 1	80 80 80	ED (dy/event) 1 1	EP (yr) 7 7	CF (yr/dy) 2.74E-03	BW (kg) 17	AP (nc) (yr)	ADD (nc) (mg/kg-dy) 1.65E-08	RfD (mg/kg-dy)	HQ (unitless)			SF [(mg/kg-dy) ⁻¹]	1
Acenaphthene 2.56E Anthracene 8.41E Benzo(a)anthracene 7.96E Benzo(b)fluoranthene 1.20E Benzo(k)fluoranthene 5.74E	-05 -06 -07 -06	0.05 0.05 0.05 0.05	1 1 1	80 80	1 1	7	2.74E-03		7						T - T	1
Anthracene 8.41E Benzo(a)anthracene 7.96E Benzo(b)fluoranthene 1.20E Benzo(k)fluoranthene 5.74E	-06 -07 -06	0.05 0.05 0.05	1 1	80	1	7		17	7							
Benzo(a)anthracene 7.96E Benzo(b)fluoranthene 1.20E Benzo(k)fluoranthene 5.74E	E-07	0.05 0.05	1 1		1	7					0.06	0.0000003				
Benzo(b)fluoranthene 1.20E Benzo(k)fluoranthene 5.74E	-06	0.05	1	80			2,74E-03	17	. 7	5.42E-09	0.3	0.00000002				
Benzo(k)fluoranthene 5.74E			1		1	7	2.74E-03	17	7	5.13E-10	0.03	0.00000002	70	5.13E-11	0.73	4E-11
	-07			80	1	7	2.74E-03	17	7	7.71E-10	0.03	0.00000003	70	7.71E-11	0.73	6E-11
Benzo(g,h,i)perylene 2,18E		0.05	1	80	1	7	2.74E-03_	17	7	3.70E-10	0.03	0.00000001	70	3.70E-11	0.073	3E-12
	5-07	0.05	1	80	1	7	2.74E-03	17	7	1.41E-10	0.03	0.000000005			_	-
Benzo(a)pyrene 6.05E	-07	0.05	1	80	1	7	2.74E-03	17	7	3,90E-10	0.03	0.00000001	70	3.90E-11	7.3	3E-10
Chrysene 9,62E	-07	0.05	1	80	1	7	2.74E-03	17	7	6.20E-10	0.03	0.00000002	70	6.20E-11	0.073	5E-12
Fluoranthene 3.77E	-06	0.05	1	80	1	7	2.74E-03	17	7	2.43E-09	0.04	0.00000006				
Fluorene 1.568	E-05	0.05	1	80	1	7	2.74E-03	17	7	1.01E-08	0.04	0.0000003				
Indeno(1,2,3-cd)pyrene 8.28E	-08	0.05	1	80	1	7	2.74E-03	17	. 7	5.34E-11	0.03	0.0000000002	70	5.34E-12	0.73	4E-12
Phenanthrene 1.07E	-05	0.05	1	80	1	7	2.74E-03	17	7	6.91E-09	0.03	0.0000002				-
Pyrene 4.35E	-06	0.05	1	80	1	7	2.74E-03	17	7	2.80E-09	0.03	0.00000009				
Barium 2.63E	-02	0.05	1	80	1	7	2.74E-03	17	7	1.69E-05	0.07	0.0002				
Cadmium 5.26E	-05	0.05	1	80	1	7	2.74E-03	17	7	3.39E-08	0.001	0.00003				
Chromium (total) 1.72E		0.05	1	80	1	7	2.74E-03	17	7	1.11E-08	1.5	0.000000007_				
Lead 2.46E		0.05	1	80	1	7	2.74E-03	17	7	1.59E-07	0.00075	0.0002				
Mercury 1.89E		0.05	1	80	1	7	2.74E-03	17	7	1.22E-09	0.0003	0.000004				
Selenium - 2.31E		0.05	1	80	1	7	2.74E-03	17	7	1.49E-08	0.005	0.000003	/			
PCB (Aroclor 1254) 2.90E		0.05	1	80	1	7	2.74E-03	17	7	1.87E-10	0.00002	0.00001	70	1.87E-11	2	4E-11
Total				<u></u>		<u></u>			HI =			0.0005	Risk =			4E-10

APPENDIX B TABLE B-7 RISK CHARACTERIZATION SURFACE WATER INGESTION TRESPASSERS Former McCoy Field Wetland Area New Bedford, Massachusetts

Youth Exposure (ages 8 to 15)

Constituent	C _{sw}	IRsw	RAFo	EF	ED	EP 🤃	CF	BW	AP (nc)	ADD (nc)	RfD	НQ	AP [ca]	ADD [ca]	SF	Risk
	(mg/L)	(L/dy)	(unitless)	(events/yr)	(dy/event)	. (уг)	(yr/dy)	(kg)	(yr)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(yr) =	(mg/kg-dy)	[(mg/kg-dy) ⁻¹]	(unitless)
Acenaphthene	2.56E-05	0.05	1	80	1	7	2.74E-03	39.9	. 7	7.02E-09	0.06	0.00000012				
Anthracene	8.41E-06	0.05	1	80	1	7	2.74E-03	39.9	7	2.31E-09	0.3	0.000000008				
Benzo(a)anthracene	7.96E-07	0.05	1	80	1	7	2.74E-03	39.9	7	2.19E-10	0.03	0.000000007	70	2.19E-11	0.73	2E-11
Benzo(b)fluoranthene	1.20E-06	0.05	1	80	1	7	2,74E-03	39.9	7	3.28E-10	0.03	0.00000001	70	3.28E-11	0.73	2E-11
Benzo(k)fluoranthene	5.74E-07	0.05	1	80	1	7	2.74E-03	39.9	7	1.58E-10	0.03	0.000000005	70	1.58E-11	0.073	1E-12
Benzo(g,h,i)perylene	2.18E-07	0.05	1	80	1	7	2.74E-03	39.9	7	5.99E-11	0.03	0.000000002		-		
Benzo(a)pyrene	6.05E-07	0.05	1	80	1	7	2.74E-03	39.9	7	1.66E-10	0.03	0.0000000006	70	1.66E-11	7.3	1E-10
Chrysene	9.62E-07	0.05	1	80	1	7	2.74E-03	39.9	7	2.64E-10	0.03	0.00000001	70	2.64E-11	0.073	2E-12
Fluoranthene	3.77E-06	0.05	1	80	1	7	2.74E-03	39.9	7	1.04E-09	0.04	0.00000003				
Fluorene	1.56E-05	0.05	1	80	1	7	2.74E-03	39.9	7	4.28E-09	0.04	0.0000001		<u> </u>		
Indeno(1,2,3-cd)pyrene	8.28E-08	0.05	1	80	1	7	2.74E-03	39.9	7	2.27E-11	0.03	0.0000000000	70	2.27E-12	0.73	2E-12
Phenanthrene	1.07E-05	0.05	1	80	1	7	2.74E-03	39.9	7	2.94E-09	0.03	0.0000001		<u> </u>		
Pyrene	4.35E-06	0.05	1	80	1	7	2.74E-03	39.9	. 7	1.19E-09	0.03	0.00000004				
Barlum	2.63E-02	0.05	1	80	1	7	2.74E-03	39.9	7	7.21E-06	0.07	0.0001				
Cadmium	5.26E-05	0.05	1	80	1	7	2.74E-03	39.9	7	1.45E-08	0.001	0.00001				
Chromium (total)	1.72E-05	0.05	1	80	1	7	2.74E-03	39.9	7	4.73E-09	1.5	0.000000003	-			
Lead	2.46E-04	0.05	1	80	1	7	2.74E-03	39.9	7	6.76E-08	0.00075	0.00009				-
Mercury	1.89E-06	0.05	1	80	1	7	2.74E-03	39.9	7	5.19E-10	0.0003	0,000002				
Selenium	2.31E-05	0.05	1	80	1	7	2.74E-03	39.9	7	6.35E-09	0.005	0.000001				
PCB (Aroclor 1254)	2.90E-07	0.05	1	80	1	7	2.74E-03	39.9	7	7.96E-11	0.00002	0.000004	70	7.96E-12	2	2E-11
Total									HI =			0.0002	Risk =			2E-10

Hirth A	Exposure (faces	15	+-	211	
4GUIL	exposure i	aues	72	w	21	

Constituent	C₅w	IR _{sw}	RAFo	EF	ED.	EP	CF	BW	- AP (nc)	ADD (nc)	RfD	HQ	- AP [ca]	ADD [ca]	SF SF	Risk
	(mg/L)	(L/dy)	(unitless)	(events/yr)	(dy/event)	(yr) · ·	(yr/dy)	* (kg)	(уг)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	· (yr)	(mg/kg-dy)	[(mg/kg-dy) ⁻¹]	(unitless)
Acenaphthene	2.56E-05	0.05	1	80	1	16	2.74E-03	58.7	16	4.77E-09	0.06	800000000				
Anthracene	8.41E-06	0.05	1	80	1	16	2.74E-03	58.7	16	1.57E-09	0.3	0.000000005		_		~-
Benzo(a)anthracene	7.96E-07	0.05	1	80	1	16	2.74E-03	58.7	16	1.49E-10	0.03	0.000000005	70	3.40E-11	0.73	2E-11
Benzo(b)fluoranthene	1.20E-06	0.05	1	80	1	16	2.74E-03	58.7	16	2.23E-10	0.03	0.000000007	70	5.10E-11	0.73	4E-11
Benzo(k)fluoranthene	5.74E-07	0.05	1	80	1	16	2.74E-03	58.7	16	1.07E-10	0.03	0.0000000004	70	2.45E-11	0.073	2E-12
Benzo(g,h,i)perylene	2.18E-07	0.05	1	80	1	16	2.74E-03	58.7	16	4.07E-11	0.03	0.000000001				-
Benzo(a)pyrene	6.05E-07	0.05	1	80	1	16	2.74E-03	58.7	16	1.13E-10	0,03	0.000000004	70	2.58E-11	7.3	2E-10
Chrysene	9.62E-07	0.05	1	80	1	16	2.74E-03	58.7	16	1.80E-10	0.03	0.000000006	70	4.11E-11	0.073	3E-12
Fluoranthene	3.77E-06	0.05	1	80	1	16	2.74E-03	58.7	16	7.04E-10	0.04	0.00000002				
Fluorene	1.56E-05	0.05	1	80	1	16	2.74E-03	58.7	16	2.91E-09	0.04	0.00000007				
Indeno(1,2,3-cd)pyrene	8.28E-08	0.05	1	80	1	16	2.74E-03	58.7	16	1.55E-11	0.03	0.00000000005	70	3.53E-12	0.73	3E-12
Phenanthrene	1.07E-05	0.05	1	80	1	16	2.74E-03	58.7	_16	2.00E-09	0.03	0.00000007		-		
Рутепе	4.35E-06	0.05	1	80	1	16	2.74E-03	58.7	16	8.12E-10	0.03	0.00000003			-	
Barium	2.63E-02	0.05	1	80	1	16	2.74E-03	58.7	16	4.90E-06	0.07	0.00007_				
Cadmium	5.26E-05	0.05	1	80	1	16	2.74E-03	58.7	16	9.83E-09	0.001	0.00001		<u></u> _		
Chromium (total)	1.72E-05	0.05	1	80	1	16	2.74E-03	58.7	16	3.22E-09	1.5	0.000000002				-
Lead	2.46E-04	0.05	1	80	1	16	2.74E-03	58.7	16	4.60E-08	0.00075	0.00006				-
Mercury	1.89E-06	0.05	1	80	1	16	2.74E-03	58.7	16	3.53E-10	0.0003	0.000001				
Selenium	2.31E-05	0.05	1	80	1	16	2.74E-03	58.7	16	4.31E-09	0.005	0.0000009		<u> </u>		
PCB (Aroclor 1254)	2.90E-07	0.05	1	80	1	16	2.74E-03	58.7	16	5.41E-11	0.00002	0.000003	70	1.24E-11	2	2E-11
Total									HI =			0.0001	Risk =			3E-10

Combined ages (1 to 31)
Total Risk

9E-10

APPENDIX B TABLE B-8 RISK CHARACTERIZATION SURFACE WATER DERMAL CONTACT TRESPASSERS Former McCoy Field Wetland Area New Bedford, Massachusetts

C_{sw} x SA x Kp x EF x EP x CF ADD/RfD Equation: ADD = HQ = BW AP HI = Sum [HQ] Risk = ADD x SF ADD = Average daily dose (mg/kg-dy) (nc = non-carcinogen; ca = carcinogen) where: where: HQ = Non-carcinogenic hazard quotient (unitiess) $C_{sw} =$ Constituent concentration in surface water (mg/L) Exposed skin surface area (cm²) HI = Total hazard index (unitiess) SA = Dermal absorption per event per mg/cm³ [(mg/cm²-event)/(mg/L)] Risk = Excess lifetime cancer risk (unitless)

 EF =
 Exposure frequency (events/year)
 RfD=
 Reference dose (mg/kg-dy)

 EP =
 Exposure period (yr)
 SF =
 Cancer slope factor [(mg/kg-dy)^1]

CF = Unit conversion factor (yr/dy)
BW = Body weight (kg)
AP = Averaging period (yr)

Child Exposure (ages 1 to 8)														
Constituent	C₅w	SA	DA _{event}	F	. EP	CF	BW	AP (nc)	ADD (nc)	RfD	HQ	AP [ca]	ADD [ca]	SF	Risk
and the second second	(mg/L)	(cm²)	[mg/cm²-event]/ [mg/L]	(events/yr)	(yr)	(yr/dy)	. (kg)	(yr)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(yr)	(mg/kg-dy)	[(mg/kg-dy) ⁻¹]	(unitless)
Acenaphthene	2.56E-05	1,351	1.02E-04	80	7	2.74E-03	17	7	4.52E-08	0.06	0.0000008			-	
Anthracene	8.41E-06	1,351	2.23E-04	80	7	2.74E-03	17	7	3.27E-08	0.3	0.0000001				
Benzo(a)anthracene	7.96E-07	1,351	1.36E-03	80	7	2.74E-03	17	7	1.88E-08	0.03	0.0000006	70	1.88E-09	0.73	1E-09
Benzo(b)fluoranthene	1.20E-06	1,351	9.41E-04	80	7	2.74E-03	17	7	1,96E-08	0.03	0.0000007	70	1.96E-09	0.73	1E-09
Benzo(k)fluoranthene	5.74E-07	1,351	1.28E-03	80	7	2.74E-03	17	7	1.27E-08	0.03	0.0000004	70	1,27E-09	0.073	9E-11
Benzo(g,h,i)perylene	2.18E-07	1,351	2.45E-03	80	7	2.74E-03_	17	7	9.32E-09	0.03	0.0000003				
Benzo(a)pyrene	6.05E-07	1,351	1.37E-03	80	7	2.74E-03	17	7	1.45E-08	0.03	0.0000005	70	1.45E-09	7.3	1E-08
Chrysene	9.62E-07	1,351	6.84E-04	80	7	2.74E-03	17	7	1.15E-08	0.03	0.0000004	70	1.15E-09	0.073	8E-11
Fluoranthene	3.77E-06	1,351	5.37E-04	80	7	2.74E-03	17	7	3.53E-08	0.04	0.0000009			<u> </u>	
Fluorene	1.56E-05	1,351	1.40E-04	80	7	2.74E-03	17	7	3.79E-08	0.04	0.0000009				
Indeno(1,2,3-cd)pyrene	8.28E-08	1,351	2,99E-03	80	7	2.74E-03	17	7	4.31E-09	0.03	0.0000001	70	4.31E-10	0.73	3E-10
Phenanthrene	1.07E-05	1,351	2.34E-04	80	7	2.74E-03	17	7	4.36E-08	0.03	0.000001	1	<u> </u>	-	
Pyrene	4.35E-06	1,351	5.05E-04	80	7	2.74E-03	17	7	3.83E-08	0.03	0.000001	1		-	
Barium	2.63E-02	1,351	2.50E-07	80	7	2.74E-03	17	7	1.14E-07	0.07	0.000002	-		_	
Cadmium	5.26E-05	1,351	2.50E-07	80	7	2.74E-03	17	7	2.29E-10	0.001	0.0000002	-	<u> </u>	-	
Chromium (total)	1.72E-05	1,351	2.50E-07	80	7	2.74E-03	17	7	7.50E-11	1,5	0.00000000005	-		-	
Lead	2.46E-04	1,351	2.50E-07	80	7	2.74E-03	17	7	1.07E-09	0.00075	0.000001	-		-	
Mercury	1.89E-06	1,351	2.50E-07	80	7	2.74E-03	17	7	8.22E-12	0.0003	0.00000003	-		-	
Selenium	2.31E-05	1,351	2.50E-07	80	7	2.74E-03	17	7	1.01E-10	0.005	0.00000002	_		-	
PCB (Aroclor 1254)	2.90E-07	1,351	3.31E-04	80	7	2.74E-03	17	7	1.67E-09	0.00002	0.0001	70	1.67E-10	2	3E-10
Total								HI =			0.0001	Risk =			1E-08

APPENDIX B TABLE B-8 RISK CHARACTERIZATION SURFACE WATER DERMAL CONTACT TRESPASSERS Former McCoy Field Wetland Area New Bedford, Massachusetts

Youth Exposure (ages 8 to 15)

Constituent	Csw	SA	DA	EF	EP	ĊE	BW	AP (nc)	ADD (nc)	RfD	но	AP [ca]	ADD [ca]	SF	Risk
CONSTRUCTION	· SW	JA .	-0.7451000000000000000000000000000000000000						''				1		
	(mg/L)	(cm²)	[mg/cm²-event]/ [mg/L]	(events/yr)	(yr)	(yr/dy)	(kg)	(yr) ⁄	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(уг)	(mg/kg-dy)	[(mg/kg-dy) ⁻¹]	(unitless)
Acenaphthene	2.56E-05	2,928	1.02E-04	80	7	2.74E-03	39.9	7	4.17E-08	0.06	0.0000007	-			
Anthracene	8.41E-06	2,928	2.23E-04	80	7	2.74E-03	39.9	7	3.02E-08	0.3	0.0000001				
Benzo(a)anthracene	7.96E-07	2,928	1.36E-03	80	7	2.74E-03	39.9	7	1.74E-08	0.03	0.0000006	70	1.74E-09	0.73	1E-09
Benzo(b)fluoranthene	1.20E-06	2,928	9.41E-04	80	77	2.74E-03	39.9	7	1.81E-08	0.03	0.0000006	70	1.81E-09	0.73	1E-09
Benzo(k)fluoranthene	5.74E-07	2,928	1.28E-03	80	7	2.74E-03	39.9	7	1.18E-08	0.03	0.0000004	70	1.18E-09	0.073	9E-11
Benzo(g,h,i)perylene	2.18E-07	2,928	2.45E-03	80	7	2,74E-03	39.9	7	8.61E-09	0.03	0.0000003			-	-
Benzo(a)pyrene	6.05E-07	2,928	1.37E-03	80	7	2.74E-03	39.9	7	1,34E-08	0.03	0.0000004	70	1.34E-09	7.3	1E-08
Chrysene	9.62E-07	2,928	6.84E-04	80	7	2.74E-03	39.9	7	1.06E-08	0.03	0.0000004	70	1.06E-09	0.073	8E-11
Fluoranthene	3.77E-06	2,928	5.37E-04	80	7	2.74E-03	39.9	7	3.26E-08	0.04	0.0000008			-	
Fluorene	1.56E-05	2,928	1.40E-04	80	7	2.74E-03	39.9	7	3.50E-08	0.04	0.0000009				
Indeno(1,2,3-cd)pyrene	8.28E-08	2,928	2.99E-03	80	7	2.74E-03	39.9	. 7	3.98E-09	0.03	0.0000001	70	3.98E-10	0.73	3E-10
Phenanthrene	1.07E-05	2,928	2.34E-04	80	7	2.74E-03	39.9	7	4,03E-08	0.03	0.000001				
Pyrene	4.35E-06	2,928	5.05E-04	80	7	2.74E-03	39.9	7	3.54E-08	0.03	0.000001				
Barium	2.63E-02	2,928	2.50E-07	80	7	2.74E-03	39.9	7	1.06E-07	0.07	0.000002				-
Cadmium	5.26E-05	2,928	2.50E-07	80	7	2.74E-03	39.9	. 7	2.12E-10	0.001	0.0000002				
Chromium (total)	1.72E-05	2,928	2.50E-07	80	7	2.74E-03	39.9	7	6.93E-11	1.5	0.00000000005				
Lead	2.46E-04	2,928	2.50E-07	80	7	2.74E-03	39.9	7	9.90E-10	0.00075	0.000001		<u></u>		
Mercury	1.89E-06	2,928	2.50E-07	80	7	2.74E-03	39.9	7	7.59E-12	0.0003	0.00000003			-	
Selenium	2.31E-05	2,928	2.50E-07	80	7	2,74E-03	39.9	7	9.29E-11	0.005	0.00000002				
PCB (Arodor 1254)	2.90E-07	2,928	3.31E-04	80	7	2.74E-03	39.9	7	1.54E-09	0.00002	0.0001	70	1.54E-10	2	3E-10
Total								HI =			0.0001	Risk =			1E-08

Adult Exposure (ages 15 to 31)

Constituent	C₅w ≒	5A	DA _{event}	. F	EP	CF	/ BW	AP (nc)	ADD (nc)	RfD	HQ	AP [ca]	ADD [ca]	SF	Risk
	(mg/L)	(cm²)	[mg/cm²-event]/ [mg/L]	(events/yr)	(yr)	(yr/dy)	(kg)	(yr)	(mg/kg-dy)	(mg/kg-dy)	(unitless)	(yr)	(mg/kg-dy)	[(mg/kg-dy) ⁻¹]	(unitiess)
Acenaphthene	2.56E-05	3,107	1.02E-04	80	16	2.74E-03	58.7	16	3.01E-08	0.06	0.000005				
Anthracene	8.41E-06	3,107	2.23E-04	80	16	2.74E-03	58.7	16	2.18E-08	0.3	0.00000007				
Benzo(a)anthracene	7.96E-07	3,107	1.36E-03	80	16	2.74E-03	58.7	16	1.25E-08	0.03	0.0000004	70	2.86E-09	0.73	2E-09
Benzo(b)fluoranthene	1.20E-06	3,107	9.41E-04	80	16	2.74E-03	58.7	16	1.30E-08	0.03	0.0000004	70	2.98E-09	0.73	2E-09
Benzo(k)fiuoranthene	5.74E-07	3,107	1.28E-03	80	16	2.74E-03	58.7	16	8.49E-09	0.03	0.0000003	70	1.94E-09	0.073	1E-10
Benzo(g,h,i)perylene	2.18E-07	3,107	2.45E-03	80	16	2.74E-03	58.7	16	6.21E-09	0.03	0.0000002		-		
Benzo(a)pyrene	6.05E-07	3,107	1.37E-03	80	16	2.74E-03	58.7	16	9.64E-09	0.03	0.0000003	70	2.20E-09	7.3	2E-08
Chrysene	9.62E-07	3,107	6.84E-04	80	16	2.74E-03	58.7	16	7.64E-09	0.03	0.0000003	70	1.75E-09	0.073	1E-10
Fluoranthene	3.77E-06	3,107	5.37E-04	80	16	2.74E-03	58.7	16	2.35E-08	0.04	0.0000006				
Fluorene	1.56E-05	3,107	1.40E-04	80	16	2.74E-03	58.7	16	2.52E-08	0.04	0.0000006				
Indeno(1,2,3-cd)pyrene	8.28⊑-08	3,107	2.99E-03	. 80	16	2.74E-03	58.7	16	2.87E-09	0.03	0.000001	70	6.57E-10	0.73	5E-10
Phenanthrene	1.07E-05	3,107	2.34E-04	80	16	2.74E-03	58.7	16	2.90E-08	0.03	0.000001				
Pyrene	4.35E-06	3,107_	5.05E-04	80	16	2.74E-03	58.7	16	2.55E-08	0.03	8000000.0	-			
Barium	2.63E-02	3,107	2.50E-07	80	16	2.74E-03	58.7	16	7.62E-08	0.07	0.000001				
Cadmium	5.26E-05	3,107	2.50E-07	80	16	2.74E-03	58.7	16	1.53E-10	0.001	0.0000002			-	
Chromium (total)	1.72E-05	3,107	2.50E-07	80	16	2.74E-03	58.7	16	5.00E-11	1.5	0.00000000003		<u> </u>	-	-
Lead	2.46E-04	3,107	2.50E-07	80	16	2.74E-03	58.7	16	7.14E-10	0.00075	0.000001	<u></u>	-		
Mercury	1.89E-06	3,107	2.50E-07	80	16	2,74E-03	58.7	16	5.48E-12	0.0003	0.00000002				
Selenium	2.31E-05	3,107	2.50E-07	80	16	2.74E-03	58.7	16	6.70E-11	0.005	0.0000001			-	
PCB (Aroclor 1254)	2.90E-07	3,107	3.31E-04	80	16	2.74E-03	58.7	16	1.11E-09	0.00002	0.00006	70	2.54E-10	2	5E-10
Total								HI =			0.00006	Risk =			2E-08

Combined ages (1 to 31)

Total Risk

5E-08

APPENDIX B TABLE B-9

SUMMARY OF CHEMICAL-SPECIFIC INPUT VARIABLES

Former McCoy Field Wetland Area New Bedford, Massachusetts

Constituent	Soil Exposure Point Concentrations	Estimated Surface Water Exposure Point Concentrations			rption Factor	2
	C _{soll}	C _{SW}	Soil Ingestion (EPA)	Soil Ingestion (MADEP)	Soil Dermal	Surface Water
	(mg/kg)	(mg/L)	(unitless)	(unitless)	(unitless):	(unitless)
Acenaphthene	0.191	2.56E-05	1	0.36	0.1	1
Anthracene	0.203	8.41E-06	1	0.36	0.1	1
Benzo(a)anthracene	0.255	7.96E-07	1	0.28	0.02	1
Benzo(b)fluoranthene	0.274	1.20E-06	1	0.28	0.02	1
Benzo(k)fluoranthene	0.218	5.74E-07	1	0.28	0.02	1
Benzo(g,h,i)perylene	0,213	2.18E-07	11	0.36	0.1	1
Benzo(a)pyrene	0.249	6.05E-07	1	0.28	0.02	1
Chrysene	0.246	9.62E-07	1	0.36	0.02	1
Fluoranthene	0.329	3.77E-06	1	0.36	0.1	1
Fluorene	0.191	1.56E-05	1	0.36	0.1	1
Indeno(1,2,3-cd)pyrene	0,208	8.28E-08	1	0.28	0.02	1
Phenanthrene	0.274	1.07E-05	1	0.36	0.1	1
Pyrene	0.351	4.35E-06	1	0.36	0.1	1
Barium	83	2.63E-02	1	1	0.05	1
Cadmium	1.05	5.26E-05	1	1	0.14	1
Chromium (total)	13	1.72E-05	1	1	0.04	1
Lead	98	2.46E-04	1	0.5	0.006	11
Mercury	0.15	1.89E-06	1	1	0.05	1
Selenium	0.92	2.31E-05	1	1	0.002	1
PCB (Aroclor 1254)	0.908	2.90E-07	1	0.85	0.16	1

^{1.} Calculated on separate sheet.

^{2.} MADEP (2004). Proposed Revised Method 1 Numerical Standards and supporting documentation. September.

APPENDIX B TABLE B-10 SUMMARY OF EXPOSURE FACTORS TRESPASSERS Former McCoy Field Wetland Area New Bedford, Massachusetts

Notation	Parameter	Value	Units	Reference
IR _{soil}	Soil ingestion rate - child	0.0001	kg/day	MADEP (1995).
	Soil ingestion rate - youth	0.00005		MADEP (1995).
	Soil ingestion rate - adult	0.00005	kg/day	MADEP (1995).
IR _{sw}	Surface water ingestion rate	0.05		MADEP (1995).
SA	Exposed skin surface area (child)	1,351		MADEP (2002a), corresponds to exposure of hands, forearms and feet.
	Exposed skin surface area (youth)	2,928	cm ²	MADEP (2002a), corresponds to exposure of hands, forearms and feet.
	Exposed skin surface area (adult)	3,107	cm ²	MADEP (2002a), corresponds to exposure of hands, forearms and feet.
AF _{soil}	Soil adherence factor (child)	5.20E-07	kg/cm²	Calculated from data in MADEP (2002a).
	Soil adherence factor (youth)	1.40E-07	kg/cm ²	MADEP (2002a), corresponds to exposure of hands, forearms and feet.
	Soil adherence factor (adult)	1.00E-07	kg/cm ²	Calculated from data in MADEP (2002a).
PM ₁₀	Particulate matter concentration in air	0.032	mg/m³	MADEP (1995); value for open field air PM ₁₀ concentrations.
EF	Exopsure frequency	80	events/yr	Four days per week in June, July, August and 2 days per week in April, May, September, October.
ED	Exposure duration (soil, sediment)	1		Conventional value.
	Exposure duration (surface water, air)	5.6	hr/event	From U.S. EPA (1997).
EP	Exposure period (child)	7	yr	Age-specific exposure period.
	Exposure period (youth)	7	yr	Age-specific exposure period.
	Exposure period (adult)	16	<u>yr</u>	Age-specific exposure period.
AP	Averaging period (child) (non-carcinogenic)	7	yr yr	Same as exposure period.
	Averaging period (youth) (non-carcinogenic)	7	уг	Same as exposure period.
	Averaging period (adult) (non-carcinogenic)	16	yr	Same as exposure period.
	Averaging period (all) (carcinogenic)	70	yr	Conventional lifetime averaging for carcinogens.
BW	Body weight (child)	17	kg	Average weight for age group (MADEP 2004).
	Body weight (youth)	39.9	kg	Average weight for age group (MADEP 2004).
_	Body weight (adult)	58.7	kg	Average weight for age group (MADEP 2004).
CF	Unit conversion factor	1.00E-06	- 2, 2	Unit conversion.
	Unit conversion factor	0.001		Unit conversion.
	Unit conversion factor	2.74E-03	yr/dy	Unit conversion.
	Unit conversion factor	1.14E-04	yr/hr	Unit conversion.

MADEP (1995). Guidance for Disposal Site Risk Characterization in Support of the Massachusetts Contingency Plan. Interim Final Policy WSC/ORS-95-141, July.

MADEP (2004). Proposed revised Method 1 Numerical Standards (and supporting documentation). September.

MADEP (2002a). Technical Update: Weighted Skin-Soil Adherence Factors. April.

U.S. EPA (1997). Exposure Factors Handbook. EPA/600/P-95-002F. April.

Appendix C ProUCL Upper Confidence Limit Summaries

eata File J:\B345-000 Beta McCe	DYNISK Stuffin	Wetlands Variable: Total PCBs	
20.00		Normal Distribution Test	
Raw Statistics	128	Lilliefors Test Statisitic	0.317457
lumber of Valid Samples	109	Lilliefors 5% Critical Value	0.078312
lumber of Unique Samples	3.5	Data not normal at 5% significance level	
<u> Ainimum</u>	11800		
Maximum	968.168	95% UCL (Assuming Normal Distribut	ion)
Viean	120.5	Student's-t UCL	1265.71
<u>Median</u>	2031.641	Otacomic	
Standard Deviation	4127564	Gamma Distribution Test	
Variance		A-D Test Statistic	5.391085
Coefficient of Variation	2.098438	A-D 5% Critical Value	0.845668
Skewness	3.237643	K-S Test Statistic	0.175941
		K-S 5% Critical Value	0.088209
Gamma Statistics	7 001 100	Data do not follow gamma distribution	
k hat	0.391493	at 5% significance level	
k star (bias corrected)	0.387526	at 5% significance level	
Theta hat	2473.015	95% UCLs (Assuming Gamma Distributi	on)
Theta star	2498.332	95% UCLS (Assuming Gamma LICI	1243.759
nu hat	100.2222	Approximate Gamma UCL	1247.306
nu star	99.20657	Adjusted Gamma UCL	
Approx.Chi Square Value (.05)	77.22447	Distribution Test	
Adjusted Level of Significance	0.048125	Lognormal Distribution Test	0.085815
Adjusted Chi Square Value	77.00485	Lilliefors Test Statisitic	0.078312
Adjusted Sin Si		Lilliefors 5% Critical Value	
Log-transformed Statistics		Data not lognormal at 5% significance lev	/61
Minimum of log data	1.252763	i I was al Diot	ribution)
Maximum of log data	9.375855	95% UCLs (Assuming Lognormal Dist	2105.459
Mean of log data	5.188726	95% H-UCL	2551.743
Standard Deviation of log data	1.954951	95% Chebyshev (MVUE) UCL	3153.10
Variance of log data	3.821832	97.5% Chebyshev (MVUE) UCL	
Variance or log data		99% Chebyshev (MVUE) UCL	4334.352
		95% Non-parametric UCLs	1263.5
		CLT UCL	
		Adj-CLT UCL (Adjusted for skewness)	1318.44
		Mod-t UCL (Adjusted for skewness)	1274.27
		Jackknife UCL	1265.7
		Standard Bootstrap UCL	1256.99
		Bootstrap-t UCL	1337.16
DECOMMENDATION		Hall's Bootstrap UCL	1314.65
RECOMMENDATION	(0.05)	Percentile Bootstrap UCL	1266.55
Data are Non-parametric	(0.00)	BCA Bootstrap UCL	1338.29
/* #	-2 Cd) LICI	95% Chebyshev (Mean, Sd) UCL	1750.9
Use 97.5% Chebyshev (Me	an, Su) UCL	97.5% Chebyshev (Mean, Sd) UCL	2089.60
		99% Chebyshev (Mean, Sd) UCL	2754
		9970 Chebyshev (Modify Ca) 2-2	

Data File J:\B345-000 Beta McC	Coy∖Risk Stuff	Wetlands Variable: Anthracene	
Raw Statistics		Normal Distribution Test	0.050023
Number of Valid Samples	122	Lilliefors Test Statisitic	0.258033
Number of Unique Samples	64	Lilliefors 5% Critical Value	0.080215
Minimum	25	Data not normal at 5% significance level	L
Maximum	2050		
Mean	203.3566	95% UCL (Assuming Normal Distribu	tion)
Median	130	Student's-t UCL	244.5708
Standard Deviation	274.6393	The state of the s	
Variance	75426.74	Gamma Distribution Test	0.574465
Coefficient of Variation	1.350531	A-D Test Statistic	3.741105
Skewness	4.60292	A-D 5% Critical Value	0.772765
		K-S Test Statistic	0.146855
Gamma Statistics		K-S 5% Critical Value	0.085523
k hat	1.398811	Data do not follow gamma distribution	
k star (bias corrected)	1.369879	at 5% significance level	
Theta hat	145.3781		
Theta star	148.4486	95% UCLs (Assuming Gamma Distribut	ion)
nu hat	341.3099	Approximate Gamma UCL	232.0809
nu star	334.2504	Adjusted Gamma UCL	232.4449
Approx.Chi Square Value (.05)	292.8806		
Adjusted Level of Significance	0.048033	Lognormal Distribution Test	
Adjusted Chi Square Value	292.422	Lilliefors Test Statisitic	0.071925
Adjusted Citi Square value	ZUZ,TZZ	Lilliefors 5% Critical Value	0.080215
Law Avanafarmad Statistics		Data are lognormal at 5% significance level	
Log-transformed Statistics	3.218876	Data are regressive as e.g.	
Minimum of log data	7.625595	95% UCLs (Assuming Lognormal Distr	ribution)
Maximum of log data	4.916734	95% H-UCL	220.7732
Mean of log data		95% Chebyshev (MVUE) UCL	258.6259
Standard Deviation of log data	0.812922	97.5% Chebyshev (MVUE) UCL	288.6032
Variance of log data	0.660842	99% Chebyshev (MVUE) UCL	347.4876
		99% Chebyshev (MVOL) OCL	0 17 1 10 1 0
		95% Non-parametric UCLs	
	-	CLT UCL	244.2553
		Adj-CLT UCL (Adjusted for skewness)	255.3271
		Mod-t UCL (Adjusted for skewness)	246.2978
		Jackknife UCL	244.5708
		Standard Bootstrap UCL	243.4193
			262.8563
		Bootstrap-t UCL	276.3142
RECOMMENDATION		Hall's Bootstrap UCL	246.0861
Data are lognormal (0.05)	Percentile Bootstrap UCL	258.5
		BCA Bootstrap UCL	311.7392
Use H-UCL		95% Chebyshev (Mean, Sd) UCL	358.6364
		97.5% Chebyshev (Mean, Sd) UCL	
		99% Chebyshev (Mean, Sd) UCL	450.7569
			1

Data File J:\B345-000 Beta McC	oy∖Risk Stuff	Wetlands Variable: Benzo(a)anthracene	
D. O. U.		Normal Distribution Test	
Raw Statistics	122	Lilliefors Test Statisitic	0.278838
Number of Valid Samples	65	Lilliefors 5% Critical Value	0.080215
Number of Unique Samples	25	Data not normal at 5% significance level	0.000210
Minimum	2300	Data flot flotfflat at 5 % significance level	
<u>Maximum</u>	·	95% UCL (Assuming Normal Distribu	tion)
Mean	254.7418 150	Student's-t UCL	310.1845
Median	 	Students-t OOL	010.1010
Standard Deviation	369.4532	Gamma Distribution Test	
Variance	136495.7	A-D Test Statistic	5.793696
Coefficient of Variation	1.450305	A-D 7est Statistic A-D 5% Critical Value	0.779188
Skewness	3.639634	K-S Test Statistic	0.184496
		K-S 5% Critical Value	0.085992
Gamma Statistics	4.450554	Data do not follow gamma distribution	0.000002
k hat	1.152554		
k star (bias corrected)	1.129677	at 5% significance level	
Theta hat	221.0237	05% HOLa (Assuming Commo Distribut	ion)
Theta star	225.4996	95% UCLs (Assuming Gamma Distribut	294.8037
nu hat	281.2233	Approximate Gamma UCL	295.3152
nu star	275.6413	Adjusted Gamma UCL	290.3102
Approx.Chi Square Value (.05)	238.1835	I Distillution Took	
Adjusted Level of Significance	0.048033	Lognormal Distribution Test	0.407500
Adjusted Chi Square Value	237.7709	Lilliefors Test Statisitic	0.107589
		Lilliefors 5% Critical Value	0.080215
Log-transformed Statistics		Data not lognormal at 5% significance lev	<u>′eı</u>
Minimum of log data	3.218876		:I4! \
Maximum of log data	7.740664	95% UCLs (Assuming Lognormal Distr	
Mean of log data	5.047375	95% H-UCL	275.7314
Standard Deviation of log data	0.89592	95% Chebyshev (MVUE) UCL	326.9201
Variance of log data	0.802673	97.5% Chebyshev (MVUE) UCL	368.2521
		99% Chebyshev (MVUE) UCL	449.4408
	1		
		95% Non-parametric UCLs	000 7004
		CLT UCL	309.7601
		Adj-CLT UCL (Adjusted for skewness)	321.5371
		Mod-t UCL (Adjusted for skewness)	312.0215
		Jackknife UCL	310.1845
		Standard Bootstrap UCL	310.7558
		Bootstrap-t UCL	333.3715
RECOMMENDATION		Hall's Bootstrap UCL	318.4108
Data are Non-parametric (0).05)	Percentile Bootstrap UCL	310.7705
		BCA Bootstrap UCL	321.0164
Use 95% Chebyshev (Mean,	Sd) UCL	95% Chebyshev (Mean, Sd) UCL	400.5414
		97.5% Chebyshev (Mean, Sd) UCL	463.629
		99% Chebyshev (Mean, Sd) UCL	587.5524
			,

Data File J:\B345-000 Beta McC	ov∖Risk Stuff	Wetlands Variable: Benzo(a)pyrene	
Raw Statistics		Normal Distribution Test	0.070054
Number of Valid Samples	122	Lilliefors Test Statisitic	0.272951
Number of Unique Samples	65	Lilliefors 5% Critical Value	0.080215
Minimum	25	Data not normal at 5% significance level	
Maximum	2300		
Mean	249.332	95% UCL (Assuming Normal Distribu	ition)
Median	137.5	Student's-t UCL	304.6748
Standard Deviation	368.7875		
Variance	136004.3	Gamma Distribution Test	I
Coefficient of Variation	1.479103	A-D Test Statistic	5.732254
Skewness	3.689594	A-D 5% Critical Value	0.779793
		K-S Test Statistic	0.173771
Gamma Statistics		K-S 5% Critical Value	0.086036
k hat	1.129364	Data do not follow gamma distribution	
k star (bias corrected)	1.107058	at 5% significance level	
Theta hat	220.7719		
Theta star	225.2204	95% UCLs (Assuming Gamma Distribut	ion)
nu hat	275.5649	Approximate Gamma UCL	288.99
nu star	270.1221	Adjusted Gamma UCL	289.4968
Approx.Chi Square Value (.05)	233.0533		
Adjusted Level of Significance	0.048033	Lognormal Distribution Test	
Adjusted Chi Square Value	232.6453	Lilliefors Test Statisitic	0.093823
/ Adjusted of the order of the order		Lilliefors 5% Critical Value	0.080215
Log-transformed Statistics		Data not lognormal at 5% significance lev	vel
Minimum of log data	3.218876		
Maximum of log data	7.740664	95% UCLs (Assuming Lognormal Dist	ribution)
Mean of log data	5.014679	95% H-UCL	268.8588
Standard Deviation of log data	0.902358	95% Chebyshev (MVUE) UCL	319.0559
Variance of log data	0.814251	97.5% Chebyshev (MVUE) UCL	359.6514
Variance or log data		99% Chebyshev (MVUE) UCL	439.3935
		95% Non-parametric UCLs	
	-	CLT UCL	304.2511
	-	Adj-CLT UCL (Adjusted for skewness)	316.1683
		Mod-t UCL (Adjusted for skewness)	306.5336
			304.6748
		Jackknife UCL	304.4391
		Standard Bootstrap UCL	319.6562
		Bootstrap-t UCL	
RECOMMENDATION		Hall's Bootstrap UCL	316.1793
Data are Non-parametric (0).05)	Percentile Bootstrap UCL	306.7992
		BCA Bootstrap UCL	317.6025
Use 95% Chebyshev (Mean,	Sd) UCL	95% Chebyshev (Mean, Sd) UCL	394.8689
		97.5% Chebyshev (Mean, Sd) UCL	457.8428
		99% Chebyshev (Mean, Sd) UCL	581.5429

Raw Statistics		Normal Distribution Test	
Number of Valid Samples	122	Lilliefors Test Statisitic	0.267731
Number of Unique Samples	65	Lilliefors 5% Critical Value	0.080215
Minimum	25	Data not normal at 5% significance level	
Maximum	2050		
Mean	245.6025	95% UCL (Assuming Normal Distribu	
Median	150	Student's-t UCL	295.6675
Standard Deviation	333.6182	AND THE RESERVE OF THE PROPERTY OF THE PROPERT	
Variance	111301.1	Gamma Distribution Test	
Coefficient of Variation	1.358367	A-D Test Statistic	5.149324
Skewness	3.528294	A-D 5% Critical Value	0.777036
		K-S Test Statistic	0.17132
Gamma Statistics		K-S 5% Critical Value	0.085835
k hat	1.235059	Data do not follow gamma distribution	
k star (bias corrected)	1.210153	at 5% significance level	
Theta hat	198.8589		
Theta star	202.9516	95% UCLs (Assuming Gamma Distribut	
nu hat	301.3544	Approximate Gamma UCL	282.7696
nu star	295.2774	Adjusted Gamma UCL	283.2428
Approx.Chi Square Value (.05)	256.4662		
Adjusted Level of Significance	0.048033	Lognormal Distribution Test	
Adjusted Chi Square Value	256.0377	Lilliefors Test Statisitic	0.097641
		Lilliefors 5% Critical Value	0.080215
Log-transformed Statistics		Data not lognormal at 5% significance lev	/el
Minimum of log data	3.218876		
Maximum of log data	7.625595	95% UCLs (Assuming Lognormal Distr	ribution)
Mean of log data	5.047103	95% H-UCL	268.7445
Standard Deviation of log data	0.873659	95% Chebyshev (MVUE) UCL	317.6407
Variance of log data	0.763279	97.5% Chebyshev (MVUE) UCL	356.9093
		99% Chebyshev (MVUE) UCL	434.0447
		05% Non parametric LICLs	
		95% Non-parametric UCLs	295.2842
	-	CLT UCL (Adjusted for skowposs)	
<u> </u>		Adj-CLT UCL (Adjusted for skewness)	305.5937
		Mod-t UCL (Adjusted for skewness)	297.2756
		Jackknife UCL	295.6675
		Standard Bootstrap UCL	294.0972
		Bootstrap-t UCL	309.5599
RECOMMENDATION		Hall's Bootstrap UCL	303.6979
Data are Non-parametric (0	0.05)	Percentile Bootstrap UCL	297.5492
		BCA Bootstrap UCL	308,6557
Use 95% Chebyshev (Mean, S	Sd) UCL	95% Chebyshev (Mean, Sd) UCL	377.2603
		97.5% Chebyshev (Mean, Sd) UCL	434.2287
	1.	99% Chebyshev (Mean, Sd) UCL	546.1322

Data File J:\B345-000 Beta Mc0	Coy∖Risk Stuff	f\WetlandsVariable: Fluorene	
	T	Name IDI (II II II Tark	
Raw Statistics	100	Normal Distribution Test	0.000047
Number of Valid Samples	122	Lilliefors Test Statisitic	0.268247
Number of Unique Samples	62	Lilliefors 5% Critical Value	0.080215
Minimum	25	Data not normal at 5% significance level	
Maximum	2050	and the latest the lat	
Mean	190.6434	95% UCL (Assuming Normal Distribu	
Median	130	Student's-t UCL	230.858
Standard Deviation	267.9776		
Variance	71811.99	Gamma Distribution Test	
Coefficient of Variation	1.405648	A-D Test Statistic	4.2328
Skewness	5.007586	A-D 5% Critical Value	0.771457
		K-S Test Statistic	0.153513
Gamma Statistics	. 	K-S 5% Critical Value	0.085428
k hat	1.448958	Data do not follow gamma distribution	
k star (bias corrected)	1.418793	at 5% significance level	••••
Theta hat	131.5728		
Theta star	134.3702	95% UCLs (Assuming Gamma Distribut	ion)
nu hat	353.5458	Approximate Gamma UCL	217.0541
nu star	346.1854	Adjusted Gamma UCL	217.3883
Approx.Chi Square Value (.05)	304.0623		
Adjusted Level of Significance	0.048033	Lognormal Distribution Test	
Adjusted Chi Square Value	303.5948	Lilliefors Test Statisitic	0.076043
		Lilliefors 5% Critical Value	0.080215
Log-transformed Statistics		Data are lognormal at 5% significance lev	
Minimum of log data	3.218876		
Maximum of log data	7.625595	95% UCLs (Assuming Lognormal Distribution)	
Mean of log data	4.867224	95% H-UCL	203.303
Standard Deviation of log data	0.781127	95% Chebyshev (MVUE) UCL	237.0035
Variance of log data	0.610159	97.5% Chebyshev (MVUE) UCL	263.5079
Variatios of log data	0.010100	99% Chebyshev (MVUE) UCL	315.5706
		0070 01100 (01100)	
		95% Non-parametric UCLs	
		CLT UCL	230.5501
		Adj-CLT UCL (Adjusted for skewness)	242.3031
		Mod-t UCL (Adjusted for skewness)	232.6913
		Jackknife UCL	230.858
		Standard Bootstrap UCL	229.3676
		Bootstrap-t UCL	258.6419
PECONANAENDATION	<u> </u>	Hall's Bootstrap UCL	268.8789
RECOMMENDATION		Percentile Bootstrap UCL	232.8033
Data are lognormal (0.05)			
		BCA Bootstrap UCL	250.2254
Use H-UCL		95% Chebyshev (Mean, Sd) UCL	296.3971
	-	97.5% Chebyshev (Mean, Sd) UCL	342.1568
		99% Chebyshev (Mean, Sd) UCL	432.0428
			<u> </u>

Data File J:\B345-000 Beta Mc0	Coy∖Risk Stuff	\Wetlands\Variable: Phenanthrene	
Raw Statistics	1	Normal Distribution Test	
Number of Valid Samples	122	Lilliefors Test Statisitic	0.311662
Number of Unique Samples	64	Lilliefors 5% Critical Value	0.080215
Minimum	25	Data not normal at 5% significance level	0.000210
Maximum	2600	Data flot flormal at 5 % significance level	l
Mean	274.4139	95% UCL (Assuming Normal Distribu	tion)
Median	150	Student's-t UCL	339.6919
Standard Deviation	434.9922	Gludents-t GOL	1 000.0010
Variance	189218.2	Gamma Distribution Test	
Coefficient of Variation	1.585168	A-D Test Statistic	7.582306
	3.594295	A-D 5% Critical Value	0.781982
Skewness	3.394293	K-S Test Statistic	0.197626
Commo Statistica		K-S 5% Critical Value	0.086196
Gamma Statistics	1.045446	Data do not follow gamma distribution	0.000130
k hat	1.045446		······································
k star (bias corrected)		at 5% significance level	
Theta hat	262.485 267.6679	059/ LICLs (Assuming Comma Distributi	on)
Theta star		95% UCLs (Assuming Gamma Distributi	319.9869
nu hat	255.0889	Approximate Gamma UCL	320.5713
nu star	250.1495	Adjusted Gamma UCL	320.57 13
Approx.Chi Square Value (.05)	214.5229	Lawrence Distribution Toot	
Adjusted Level of Significance	0.048033	Lognormal Distribution Test	0.447420
Adjusted Chi Square Value	214.1318	Lilliefors Test Statisitic	0.117132
And Administration of the Control of		Lilliefors 5% Critical Value	0.080215
Log-transformed Statistics		Data not lognormal at 5% significance lev	ei
Minimum of log data	3.218876	050/ 1101 / / / / / / / / / / / / / / / /	I1! \
Maximum of log data	7.863267	95% UCLs (Assuming Lognormal Distri	
Mean of log data	5.065349	95% H-UCL	289.6588
Standard Deviation of log data	0.922676	95% Chebyshev (MVUE) UCL	344.6947
Variance of log data	0.851332	97.5% Chebyshev (MVUE) UCL	389.4287
		99% Chebyshev (MVUE) UCL	477.2998
		95% Non-parametric UCLs	
		CLT UCL	339.1921
		Adj-CLT UCL (Adjusted for skewness)	352.8857
		Mod-t UCL (Adjusted for skewness)	341.8278
		Jackknife UCL	339.6919
		Standard Bootstrap UCL	340.8476
		Bootstrap-t UCL	364.2026
RECOMMENDATION		Hall's Bootstrap UCL	353.5453
Data are Non-parametric (0).05)	Percentile Bootstrap UCL	342.9959
		BCA Bootstrap UCL	350.0738
Use 95% Chebyshev (Mean,	Sd) UCL	95% Chebyshev (Mean, Sd) UCL	446.0776
		97.5% Chebyshev (Mean, Sd) UCL	520.3566
		99% Chebyshev (Mean, Sd) UCL	666.2633

Data File J:\B345-000 Beta Mc0	Coy∖Risk Stuff	Wetlands Variable: Pyrene	
Raw Statistics		Normal Distribution Test	
Number of Valid Samples	122	Lilliefors Test Statisitic	0.331381
Number of Unique Samples	69	Lilliefors 5% Critical Value	0.080215
Minimum	25	Data not normal at 5% significance level	
Maximum	5600		
Mean	350.7172	95% UCL (Assuming Normal Distribu	ıtion)
Median	170	Student's-t UCL	454.4241
Standard Deviation	691.0707		
Variance	477578.8	Gamma Distribution Test	
Coefficient of Variation	1.97045	A-D Test Statistic	8.02026
Skewness	5.4638	A-D 5% Critical Value	0.786553
		K-S Test Statistic	0.200448
Gamma Statistics		K-S 5% Critical Value	0.0865
k hat	0.93018	Data do not follow gamma distribution	
k star (bias corrected)	0.912771	at 5% significance level	
Theta hat	377.0424		
Theta star	384.2335	95% UCLs (Assuming Gamma Distribut	
nu hat	226.9639	Approximate Gamma UCL	412.9156
nu star	222.7161	Adjusted Gamma UCL	413.7172
Approx.Chi Square Value (.05)	189.1679		
Adjusted Level of Significance	0.048033	Lognormal Distribution Test	
Adjusted Chi Square Value	188.8014	Lilliefors Test Statisitic	0.098352
		Lilliefors 5% Critical Value	0.080215
Log-transformed Statistics		Data not lognormal at 5% significance lev	/el
Minimum of log data	3.218876		
Maximum of log data	8.630522	95% UCLs (Assuming Lognormal Dist	
Mean of log data	5.234038	95% H-UCL	359.6613
Standard Deviation of log data	0.962164	95% Chebyshev (MVUE) UCL	430.2313
Variance of log data	0.925759	97.5% Chebyshev (MVUE) UCL	488.1767
ALL THE STATE OF T		99% Chebyshev (MVUE) UCL	601.999
· · ·		059/ Non parametria LICLs	
	_	95% Non-parametric UCLs CLT UCL	453.6301
		Adj-CLT UCL (Adjusted for skewness)	486.7004
		Mod-t UCL (Adjusted for skewness)	459.5824
		Jackknife UCL	454.424
		Standard Bootstrap UCL	453.8195
			534.6792
DECOMMATAIDATION!	_1	Bootstrap-t UCL Hall's Bootstrap UCL	873.495
RECOMMENDATION	0.05)	Percentile Bootstrap UCL	461.2582
Data are Non-parametric (ບ.ບວງ	BCA Bootstrap UCL	505.377
		95% Chebyshev (Mean, Sd) UCL	623.4387
Use 95% Chebyshev (Mean,	Su) UCL	97.5% Chebyshev (Mean, Sd) UCL	741.445
			973.247
		99% Chebyshev (Mean, Sd) UCL	313.241

Data File J:\B345-000 Beta McC	Coy∖Risk Stuff	\Wetlands Variable: Cadmium	
	T	Normal Distribution Test	
Raw Statistics	100	Lilliefors Test Statisitic	0.216269
Number of Valid Samples	123 89	Lilliefors 5% Critical Value	0.210203
Number of Unique Samples		Data not normal at 5% significance level	0.073000
Minimum	0.19	Data not normal at 5% significance level	
Maximum	5.75	95% UCL (Assuming Normal Distribu	ution)
Mean	1.054797	Student's-t UCL	1.191722
Median	0.79	Student's-t OCL	1.131122
Standard Deviation	0.916214	Gamma Distribution Test	
Variance	0.839448	A-D Test Statistic	1.968531
Coefficient of Variation	0.868617	A-D 1est Statistic A-D 5% Critical Value	0.764672
Skewness	2.686119	K-S Test Statistic	0.11545
		K-S 5% Critical Value	0.084566
Gamma Statistics	0.405000		1 0.004300
k hat	2.105922	Data do not follow gamma distribution	
k star (bias corrected)	2.059978	at 5% significance level	
Theta hat	0.500872	OFFICE A (Assuming Commo Distribut	ion
Theta star	0.512043	95% UCLs (Assuming Gamma Distribut	1.173382
nu hat	518.0569	Approximate Gamma UCL	1.174852
nu star	506.7547	Adjusted Gamma UCL	1.174002
Approx.Chi Square Value (.05)	455.5405	Lawrence Distribution Toot	
Adjusted Level of Significance	0.048049	Lognormal Distribution Test	0.070481
Adjusted Chi Square Value	454.9707	Lilliefors Test Statisitic	
		Lilliefors 5% Critical Value	0.079888
Log-transformed Statistics	4.000704	Data are lognormal at 5% significance lev	/61
Minimum of log data	-1.660731	OFFICE A Assuming Lagrange Diet	ibution\
Maximum of log data	1.7492	95% UCLs (Assuming Lognormal Distr	1.172277
Mean of log data	-0.202482	95% H-UCL	1.346756
Standard Deviation of log data	0.692457	95% Chebyshev (MVUE) UCL	1.481446
Variance of log data	0.479497	97.5% Chebyshev (MVUE) UCL	1.746018
		99% Chebyshev (MVUE) UCL	1.740010
		95% Non-parametric UCLs	
		CLT UCL	1.190682
		Adj-CLT UCL (Adjusted for skewness)	1.212061
		Mod-t UCL (Adjusted for skewness)	1.195056
		Jackknife UCL	1.191722
		Standard Bootstrap UCL	1.187447
		Bootstrap-t UCL	1.232909
RECOMMENDATION		Hall's Bootstrap UCL	1.216191
Data are lognormal (0.05)		Percentile Bootstrap UCL	1.192276
		BCA Bootstrap UCL	1.22187
Use H-UCL		95% Chebyshev (Mean, Sd) UCL	1.414895
		97.5% Chebyshev (Mean, Sd) UCL	1.57071
		99% Chebyshev (Mean, Sd) UCL	1.876778

Data File J:\B345-000 Beta McC	oy\Risk Stuff	\Wetlands Variable: Lead	
		Normal Distribution Test	
Raw Statistics	123	Lilliefors Test Statisitic	0.255915
Number of Valid Samples	93	Lilliefors 5% Critical Value	0.079888
Number of Unique Samples	1.7	Data not normal at 5% significance level	
Minimum	810	Data flot floriflar at 676 digfilliocities level	
Maximum	97.55805	95% UCL (Assuming Normal Distribu	tion)
Mean	46	Student's-t UCL	119.3962
Median	146.1268	Students-t OOL	
Standard Deviation	21353.05	Gamma Distribution Test	
Variance	1.497845	A-D Test Statistic	2.445085
Coefficient of Variation	2.783457	A-D 5% Critical Value	0.796806
Skewness	2.763437	K-S Test Statistic	0.107818
		K-S 5% Critical Value	0.08689
Gamma Statistics	0.734122	Data do not follow gamma distribution	
k hat	0.734122	at 5% significance level	
k star (bias corrected)		at 5 % significance level	
Theta hat	132.8908 135.19	95% UCLs (Assuming Gamma Distribut	ion)
Theta star		Approximate Gamma UCL	117.2554
nu hat	180.594	Adjusted Gamma UCL	117.51
nu star	177.5226	Aujusted Gamma COL	1
Approx.Chi Square Value (.05)	147.7012	Lognormal Distribution Test	
Adjusted Level of Significance	0.048049	Lilliefors Test Statisitic	0.049995
Adjusted Chi Square Value	147.3811	Lilliefors 5% Critical Value	0.079888
		Data are lognormal at 5% significance level	
Log-transformed Statistics	0.530628	Data are logitormal at 676 digrimoaries is	
Minimum of log data	6.697034	95% UCLs (Assuming Lognormal Dist	ribution)
Maximum of log data	3.762625	95% H-UCL	138.3066
Mean of log data	1.318884	95% Chebyshev (MVUE) UCL	171.1125
Standard Deviation of log data	1.739456	97.5% Chebyshev (MVUE) UCL	201.2634
Variance of log data	1.739430	99% Chebyshev (MVUE) UCL	260.489
		99 % Chebyshev (MVOE) COE	
		95% Non-parametric UCLs	
		CLT UCL	119.2303
		Adj-CLT UCL (Adjusted for skewness)	122.7637
		Mod-t UCL (Adjusted for skewness)	119.9473
		Jackknife UCL	119.3962
		Standard Bootstrap UCL	118.7295
		Bootstrap-t UCL	123.1889
DECOMMENDATION.		Hall's Bootstrap UCL	122.9418
RECOMMENDATION		Percentile Bootstrap UCL	119.912
Data are lognormal (0.05)		BCA Bootstrap UCL	123.2833
11-11-1101		95% Chebyshev (Mean, Sd) UCL	154.9901
Use H-UCL		97.5% Chebyshev (Mean, Sd) UCL	179.841
		99% Chebyshev (Mean, Sd) UCL	228.6557
	_	33 /0 OHEDYSHEV (MEAH, Od) COL	

Raw Statistics		Normal Distribution Test	0.040040
Number of Valid Samples	123	Lilliefors Test Statisitic	0.249912
Number of Unique Samples	99	Lilliefors 5% Critical Value	0.079888
Minimum	0.0055	Data not normal at 5% significance level	<u> </u>
Maximum	2.06		
Mean	0.148659	95% UCL (Assuming Normal Distribu	tion)
Median	0.106	Student's-t UCL	0.180365
Standard Deviation	0.212161		
Variance	0.045012	Gamma Distribution Test	
Coefficient of Variation	1.427167	A-D Test Statistic	1.772303
Skewness	6.54453	A-D 5% Critical Value	0.775742
		K-S Test Statistic	0.096561
Gamma Statistics		K-S 5% Critical Value	0.085475
k hat	1.285201	Data do not follow gamma distribution	
k star (bias corrected)	1.259275	at 5% significance level	
Theta hat	0.115669		
Theta star	0.118051	95% UCLs (Assuming Gamma Distribut	ion)
nu hat	316.1595	Approximate Gamma UCL	0.170562
nu star	309.7816	Adjusted Gamma UCL	0.170838
Approx.Chi Square Value (.05)	269.9996		-1-1-11
Adjusted Level of Significance	0.048049	Lognormal Distribution Test	
Adjusted Chi Square Value	269.5633	Lilliefors Test Statisitic	0.079072
Adjusted Offi Oquale Value	200.000	Lilliefors 5% Critical Value	0.079888
Log-transformed Statistics		Data are lognormal at 5% significance lev	
Minimum of log data	-5.203007	Data are regressive and regressive	
Maximum of log data	0.722706	95% UCLs (Assuming Lognormal Distr	ibution)
	-2.343128	95% H-UCL	0.179466
Mean of log data	0.94172	95% Chebyshev (MVUE) UCL	0.21403
Standard Deviation of log data	0.886837	97.5% Chebyshev (MVUE) UCL	0.242237
Variance of log data	0.000037	99% Chebyshev (MVUE) UCL	0.297643
		99% Chebyshev (MVOL) CCL	0.201010
		95% Non-parametric UCLs	
		CLT UCL	0.180124
		Adj-CLT UCL (Adjusted for skewness)	0.192186
		Mod-t UCL (Adjusted for skewness)	0.192100
			0.18036
		Jackknife UCL	0.17993
	-	Standard Bootstrap UCL	
		Bootstrap-t UCL	0.20591
RECOMMENDATION		Hall's Bootstrap UCL	0.31969
Data are lognormal (0.05)		Percentile Bootstrap UCL	0.18166
		BCA Bootstrap UCL	0.19523
Use H-UCL		95% Chebyshev (Mean, Sd) UCL	0.23204
		97.5% Chebyshev (Mean, Sd) UCL	0.26812
	1 1	99% Chebyshev (Mean, Sd) UCL	0.33899

Appendix D Avian Risk Characterization Calculations

APPENDIX D APPENDIX D TABLE D-1 RISK CHARACTERIZATION CALCULATIONS AMERICAN ROBIN

Former McCoy Field Wetland Area New Bedford, Massachusetts

Intake_{soli} =
Intake_{food} =
Intake_{water} =
Intake_{total} =
HI-Low =

 $\begin{array}{l} C_{soil} \times IR_{soil} \times BA_{soil/food} \times A/FA \\ [(C_{food1} \times F_1) + (C_{food2} \times F_2)] \times IR_{food} \times BA_{soil/food} \times A/FA \\ C_{water} \times IR_{water} \times A/FA \\ Intake_{soil} + Intake_{food} + Intake_{water} \\ Intake_{total}/TRV-High \end{array}$

HI-rom =	Intake _{total} /TRV-High		
HI-High =	Intake _{total} /TRV-Low		
HI-Low = HI-High = TRV-Low = TRV-High =	Low estimate of hazard index (unitiess) High estimate of hazard index (unitiess) Toxicity reference value (low (mg/kgBW-dy) Toxicity reference value (low (mg/kgBW-dy)	Value Calculated Calculated Constituent-specific	Source see applicable table.
Intake _{total} = Intake _{soll} = Intake _{food} =	Total intake of constituent from all pathways (mg/kgBW-dy) Intake of constituent from soll ingestion (mg/kgBW-dy) Intake of constituent from food ingestion (mg/kgBW-dy)	Constituent-specific Calculated Calculated Calculated	see applicable table
Intake _{water} = $C_{soll} = IR_{soll} = BA_{soll/food} =$	Intake of constituent from water ingestion (mg/kgBW-dy) Soil constituent concentration (mg/kgDW) Soil ingestion rate (kgDW/kgBW-day) Bioavaliabiliy from soil/food (unitless)	Calculated Constituent-specific 0.0143 Constituent-specific	 U.S. EPA (1999)
C _{food} / = F _/ =	Food constituent concentration in ith food type (mg/kg WW) Fraction of ith food type in diet (unitless)	Constituent-specific 0.38 Invertebrates 0.62 vegetation	 U.S. EPA (1993) U.S. EPA (1993)
IR _{food} = C _{water} = IR _{water} = A = FA =	Total food ingestion rate (kgWW/kgBW-day) Water constituent concentration (mg/L) Water Ingestion rate (L/kgBW-day) On-site foraging area (acres) Total foraging area for organism (acres)	0.44 Constituent-specific 0.137 4 Site estimate 1.2	U.S. EPA (1999) U.S. EPA (1999) Estimated site wetland area. U.S. EPA (1993)

C_{food1 (Invert)} = BCF_{SSI} = C_{soll} x BCF_{SSI} Soll-to-soll Invertebrate bloaccumulation factor [(mg/kg WW)/(mg/kg soll)]

 $C_{\text{food2 (veg)}} = BCF_r =$

 $C_{soll} \times BCF_r \times 0.12$ Plant-soil biotransfer factor [(mg/kg DW)/(mg/kg soil) Dry weight (DW) to wet weight (WW) conversion factor (unitless) 0.12 = [A/FA]=

Constituent	C _{poll}	BA _{soll/food}	IR _{soil}	BCF _{SSI}	C _{food(Invert)}	F _{food(invert)}	BCF,	0.12	C _{food(veg)}	F _{food(veg)}	IR _{food}	C _{water}	IR _{water}	A/FA	Intake _{soll}	Intake _{food}	Intake _{water}	Intake _{total}	TRV-Low	HI- High	TRV-High	HI-Low
	(mg/kg DW)	(unitless)	(kgDW/kgBW-dy)	(mg/kg WW)/ (mg/kg DW soli)	(mg/kg WW)	(unitless)	(mg/kg DW)/ (mg/kg DW soil)	(unitiess)	(mg/kg WW)	(unitiess)	(kgWW/ kgBW-dy)	(ma/L)	(L/kgBW-day	(unitiess)	(ma/kaRW-dv)	(ma/kaBW-dy)	(mg/kgBW-dy)	(ma/kaPM-du)	(ma (lea Bill d.)		S 11 11-2	
PCBs (as Aroclor 1254)	2.09	1	0.0143	1.13	2.36E+00	0.38	1.27E-02	0.12	3.18E-03	0.62	0.44	6.67E-07	0.137	1	2.99E-02	3.96E-01	9.14E-08	4.26E-01		(unitiess)	(mg/kgBW-dy)	(unitiess)
Acenaphthene	0.191	1	0.0143	0.05	9.55E-03	0.38	2,10E-01	0.12	4.81E-03	0.62	0.44	2.56E-05	0.137	1	2.73E-03	3,90E-01	3.50E-06	5.64E-03	0.09	0 000	1.8	0.2
Anthracene	0.221	1	0.0143	0.05	1.11E-02	0.38	9.20E-02	0.12	2.44E-03	0.62	7	9.15E-06	0.137	 -	3.16E-03	4.00E-02	1.25E-06			0.003	 	0.003
Benzo(a)anthracene	0.401	1	0.0143	0.03	1.20E-02	0.38	1.43E-02	0.12	6.87E-04	0.62	0.44	1.25E-06	0.137		5.73E-03	3 205 02	1.72E-07	4.31E-02	1	0.04	<u> </u>	0.04
Benzo(b)fluoranthene	0.274	1	0.0143	0.07	1.92E-02	0.38	1.72E-02	0.12	5.66E-04	0.62	0.44	1.20E-06	0.137		3.92E-03	3.36E-03	1.64E-07	7.93E-03	1.1	0.007	1.1	0.007
Benzo(k)fluoranthene	0.218	1	0.0143	0.08	1.74E-02	0.38	1.32E-02	0.12	3.45E-04	0.62	0.44	5.74E-07	0.137		3.12E-03	3.01E-03		7.28E-03		0.004	2	0.004
Benzo(g,h,i)perylene	0.213	1	0.0143	0.05	1.07E-02	0.38	6.78E-03	0.12	1.73E-04	0.62	0.44	2.18E-07	0.137		3.05E-03		7.86E-08	6.13E-03		0.003	2	0.003
Benzo(a)pyrene	0.395	1	0.0143	0.07	2.77E-02	0.38	1.25E-02	0.12	5.92E-04	0.62	0.44	9.60E-07	0.137			1.83E-03	2.99E-08	4.87E-03	2	0.002	2	0.002
Chrysene	0.377	1	0.0143	0.04	1.51E-02	0,38	2.60E-02	0.12	1.18E-03	0.62	0.44	1.47E-06	0.137		5.65E-03	4.78E-03	1.32E-07	1.04E-02	2	0.005		0.005
Fluoranthene	0.329	1	0.0143	0.05	1.65E-02	0.38	3.72E-02	0.12	1.47E-03	0.62	0.44	3.77E-06	0.137		3.39E-U3	2.84E-03	2.02E-07	8.23E-03	2	0.004	2	0.004
Fluorene	0.203	1	0.0143	0.05	1.02E-02	0.38	1,49E-01	0.12	3.62E-03	0.62	0.44	1.66E-05			4.70E-03	3.15E-03	5.16E-07	7.86E-03	Z	0.004	2 !	0.004
Indeno(1,2,3-cd)pyrene	0.208	1	0.0143	0.08	1.66E-02	0.38	3.48E-03	0.12	8.69E-05	0.62	0.44	8.28E-08	0.137		2.90E-03	2.68E-03	2.27E-06	5.59E-03	1	0.006	1	0.006
Phenanthrene	0.446	1	0.0143	0.05	2.23E-02	0.38	8.84E-02	0.12	4.73E-03	0.62	0.44	1.74E-05	0.137		2.97E-03	2.81E-03	1.13E-08	5.78E-03	2	0.003	2	0.003
Pyrene	0.623	1	0.0143	0.05	3.12E-02	0.38	3.93E-02	0.12	2.94E-03	0.62			0.137		6.38E-03	5.02E-03	2.39E-06	1.14E-02	1.1	0.01	1.1	0.01
Barium	83	0.07	0.0143	0.01	8.30E-01	0.38	1.50E-01	0.12	1.49E+00	0.62	0.44	7.72E-06	0.137	:	8.91E-03	6.01E-03	1.06E-06	1.49E-02	2	0.007	2	0.007
Cadmium	1.17	0.01	0.0143	0.96	1.12E+00	0.38	3.64E-01	0.12	5.11E-02	0.62		2.63E-02	0.137	<u>_</u>	8.31E-02	3.82E-02	3.60E-03	1.25E-01	20.8	0.006	47.1	0.003
Chromium	13	0.005	0.0143	0.01	1.30E-01	0.38	7.50E-03	0.12	1.17E-02		0.44	5.86E-05	0.137		1.67E-04	2.02E-03	8.03E-06	2.19E-03	1.45	0.002	20	0.0001
Lead	138	0.12	0.0143	0.03	4.14E+00	0.38	4.50E-02	0.12	7.45E-01	0.62	0.44	1.72E-05	0.137		9.30E-04	1.25E-04	2.36E-06	1.06E-03	1	0.001	5	0.0002
Mercury	0.18	0.07	0.0143	0.04	7.20E-03	0.38	3.75E-02	0.12			0.44	3.47E-04	0.137	1	2.37E-01	1.07E-01	4.75E-05	3.44E-01	1.13	0.3	11.3	0.03
Selenium	0.92	0.44	0.0143	0.01	9.20E-03	0.38	1.60E-02	0.12	8.10E-04 1.77E-03	0.62	0.44	2.27E-06	0.137	1	1.80E-04	9.97E-05	3.10E-07	2.80E-04	0.039	0.007	0.9	0.0003
				5,51	J.20L 03	0.50	1.00L-02	0.12	1.//E-U3	0,02	U.44	2.31E-05	0.137	1	5.79E-03	8.89E-04	3.17E-06	6.68E-03	0.5	0.01	1.0	0.007
																			HI =	5	HI =	0.4

U.S. EPA (1999). Screening Level Ecological Risk Assessment Protocol for Hazardous Waste Combustion Facilities. EPA 530-D-99-001A, August. U.S. EPA (1993). Wildlife Exposure Factors Handbook, Volume I. EPA/600/R-93/187a, December.

APPENDIX D TABLE D-2 RISK CHARACTERIZATION CALCULATIONS RED-TAILED HAWK

Source

U.S. EPA (1999)

U.S. EPA (1993)

U.S. EPA (1999)

U.S. EPA (1993)

Site estimate

see applicable table.

Assumed

see applicable table.

see applicable table.

Former McCoy Field Wetland Area New Bedford, Massachusetts

Intake_{soll} =

C_{soli} x IR_{soli} x BA_{soli/food} x A/FA

 $Intake_{food} =$ Intake_{water} =

[(C_{food} x F) x IR_{food} x BA_{soli/food} x A/FA Cwater X IRwater X A/FA

Intake_{total} =

Intake_{soil} + Intake_{food} + Intake_{water}

HI-Low = HI-High = Intake_{total}/TRV-High Intake_{total}/TRV-Low

HI-Low = HI-High =

Low estimate of hazard index (unitiess) High estimate of hazard index (unitiess)

Toxicity reference value (low) (mg/kgBW-dy)

TRV-Low = TRV-High = Intake_{total} =

Toxicity reference value (high) (mg/kgBW-dy) Total intake of constituent from all pathways (mg/kgBW-dy) Intake_{soll} = Intake of constituent from soil ingestion (mg/kgBW-dy) Intake of constituent from food Ingestion (mg/kgBW-dy)

Intake_{food} = Intake_{water} =

Intake of constituent from water ingestion (mg/kgBW-dy) Soil constituent concentration (mg/kgDW) $IR_{sol} =$ Soil ingestion rate (kgDW/kgBW-day)

C_{food/} = F_/ =

Food constituent concentration in ith food type (mg/kg WW) Fraction of ith food type in diet (unitless) Total food ingestion rate (kgWW/kgBW-day) IR_{food} = Bioavailabiliy from soil/food (unitless)

BA_{soll/food} : IR_{water} =

Water constituent concentration (mg/L) Water ingestion rate (L/kgBW-day) On-site foraging area (acres) FA = Total foraging area for organism (acres)

C_{food} =

 $\mathsf{BA}_{\mathsf{mainimal}}\left[(\mathsf{C}_{\mathsf{soil}}\times\mathsf{BCF}_{\mathsf{ssi}}\times\mathsf{BA}_{\mathsf{soil/food}}\times\mathsf{IR}_{\mathsf{food}\cdot\mathsf{shrew}}) + (\mathsf{C}_{\mathsf{soil}}\times\mathsf{BA}_{\mathsf{soil/food}}\times\mathsf{IR}_{\mathsf{soil-shrew}}) + (\mathsf{C}_{\mathsf{SW}}\times\mathsf{IR}_{\mathsf{SW-shrew}})\right]$ where:

BA_{mammal} =

Mammal biotransfer factor (dy/kg) Shrew consumption rate of worms (kg/dy)

 $IR_{food-shrew} =$ IR_{soll-shrew} =

Shrew consumption rate of soil (kg/dy) Shrew consumption rate of surface water (L/dy) **Value**

Calculated

Calculated

Constituent-specific

Constituent-specific

Calculated

Calculated

Calculated

Calculated

Constituent-specific

0.00995

Constituent-specific

0.185

Constituent-specific

Constituent-specific

0.057

1,700

small mammals

[A/FA]=

 $IR_{SW-shrew} =$ 1 or less

Constituent	C _{soll}	BA _{soll/food}	IR _{soil}	BCF _{ssl} (mg/kg ww)/	BA _{mammal}	IR _{food-shrew}	IR _{soll-shrew}	IR _{SW-shrew}	C _{food}	IR _{food}	F _{food}	C _{water}	IR _{water}	A/FA	Intake	Intake _{food}	Intakewater	Intake	TRV-Low	HI-High	TRV-High	127 1 200
	(mg/kg)	(unitless)	(kg/kgBW-dy)	(mg/kg dry soll)	_(day/kg FW tissue)	(kg/dy)	(kg/dy)	(1/dy)	(mg/kg WW)	(kaWW/kaBW-dv)	Clear Clean Policy also	In 113			1						IKY-migh	HI-Low
PCBs (as Arocior 1254)	2.09	1	0.00995	1.13	2.69E-02	0.0075	0.00022	0.0023	4.89E-04	0.185	(kg/kgBW-dy)	(mg/L)	(L/kgBW-day)	(unitless)	(mg/kgBW-dy)	(mg/kgBW-dy)	(mg/kgBW-dy)	(mg/kgBW-dy)	(mg/kgBW-dy)	(unitless)	(mg/kgBW-dy)	(unitiess)
Acenaphthene	0.191	1	0.00995	0.05	2.09E-04	0.0075	0.00022	0.0023	2.37E-08		 	6.67E-07	0.057	0.0024	4.89E-05	2.13E-07	8.94E-11	4.91E-05	0.09	0.0005	1.8	0.00003
Anthracene	0.221	1	0.00995	0.05	8.71E-04	0.0075	0.00022	0.0023	1.14E-07	0.185	 	2.56E-05	0.057	0.0024	4.47E-06	1.03E-11	3.43E-09	4.48E-06	2	0.000002	2	0.000002
Benzo(a)anthracene	0.401	1	0.00995	0.03	2.19E-02	0.0075	0.00022	0.0023	3.88E-06	0.185	1 1	9.15E-06	0.057	0.0024	5.17E-06	4.97E-11	1.23E-09	5.18E-06	1	0.000005	1	0.000005
Benzo(b)fluoranthene	0.274	1	0.00995	0.07	1.58E-02	0.0075	0.00022	0.0023		0.185	1	1.25E-06	0.057	0.0024	9.39E-06	1.69E-09	1.68E-10	9.39E-06	1.1	0.000009	1.1	0.000009
Benzo(k)fluoranthene	0.218	1	0.00995	0.08	2.51E-02	0.0075	0.00022	0.0023	3.22E-06	0.185	1 1	1.20E-06	0.057	0.0024	6.41E-06	1.40E-09	1.60E-10	6.42E-06	2	0.000003	2	0.000003
Benzo(g,h,i)perylene	0.213	1	0.00995	0.05	7.94E-02	0.0075	0.00022	0.0023	4.48E-06	0.185	1 1	5.74E-07	0.057	0.0024	5.10E-06	1.95E-09	7.70E-11	5.11E-06	2	0.000003	2	0.000003
Benzo(a)pyrene	0.395	1	0.00995	0.07	2.75E-02	0.0075	0.00022	0.0023	1.00E-05	0.185	1 1	2,18E-07	0.057	0.0024	4.99E-06	4.36E-09	2.93E-11	4.99E-06	2	0.000002	2	0.000002
Chrysene	0.377	1	0.00995	0.04	7.76E-03	0.0075	0.00022	0.0023	8.08E-06	0.185	1 1	9.60E-07	0.057	0.0024	9.25E-06	3.52E-09	1.29E-10	9.25E-06	2	0.000005	2	0.000005
Fluoranthene	0.329	1	0.00995	0.05	4,17E-03	0.0075	0.00022		1.51E-06	0.185	1	1,47E-06	0.057	0.0024	8.83E-06	6.59E-10	1.98E-10	8.83E-06	2	0.000004	2	0.000004
Fluorene	0.203	1	0.00995	0.05	3.80E-04	0.0075	0.00022	0.0023	8.13E-07	0.185	1	3.77E-06	0.057	0.0024	7.70E-06	3.54E-10	5.05E-10	7.70E-06	2	0.000004	- 5 	0.000004
Indeno(1,2,3-cd)pyrene	0.208	1	0.00995	0.08	2.51E-01	0.0075	0.00022	0.0023	4.57E-08	0.185	1 1	1.66E-05	0.057	0.0024	4.75E-06	1.99E-11	2.22E-09	4.75E-06	1	0.000005	1	0.000005
Phenanthrene	0.446	1	0.00995	0.05	9.33E-04	0.0075		0.0023	4.27E-05	0.185	1 1	8.28E-08	0.057	0.0024	4.87E-06	1.86E-08	1.11E-11	4.89E-06	2	0.000002	2	0.000002
Pyrene	0.623	1	0.00995	0.05	3.80E-03	0.0075	0.00022	0.0023	2.47E-07	0.185	1 1	1.74E-05	0.057	0.0024	1.04E-05	1.07E-10	2.34E-09	1.04E-05	1.1	0.000009	11	0.000002
Barlum	83	0.07	0.00995	0.01	9.43E-03	0.0075	0.00022	0.0023	1.40E-06	0.185	1 1	7.72E-06	0.057	0.0024	1.46E-05	6.11E-10	1,04E-09	1,46E-05	2	0.000007	2	0.000007
Cadmlum	1.17	0.01	0.00995	0.96	7.54E-03	0.0075	0.00022	0.0023	1.66E-05	0.185	1	2.63E-02	0.057	0.0024	1.36E-04	5.05E-10	3.52E-06	1.40E-04	20.8	0.000007	47.1	0.000003
Chromium	13	0.005	0.00995	0.01	3.45E-01		0.00022	0.0023	6.55E-07	0.185	1	5.86E-05	0.057	0.0024	2.74E-07	2.85E-12	7.87E-09	2.82F-07	1.45	0.0000002	20	0.00000001
ead	138	0.12	0.00995	0.03	1.88E-02	0.0075	0.00022	0.0023	6.57E-06	0.185	1	1.72E-05	0.057	0.0024	1.52E-06	1.43E-11	2.31E-09	1.52E-06	1	0.000002	5	0.00000001
Mercury	0.18	0.07	0.00995	0.03	3.26E-01	0.0075	0.00022	0.0023	1.38E-04	0.185	1	3.47E-04	0.057	0.0024	3.88E-04	7,20E-09	4.65E-08	3.88E-04	1.13	0.0003	11.3	0.000003
Selenium	0.92	0.44	0.00995	0.01	1.43E-01	0.0075	0.00022	0.0023	2.13E-06	0.185	1	2.27E-06	0.057	0.0024	2.95E-07	6.49E-11	3.04E-10	2.95F-07	0.039	0.000008	77.3	0.000003
Total			0.00000	0.01	1,735-01	0.0075	0.00022	0.0023	1.69E-05	0.185	1	2.31E-05	0.057	0.0024	9.48E-06	3.23E-09	3.10E-09	9.48E-06	0.55	0.00000	1 1	0.0000009
744		 																21.02.00	HI =	0.001	HI =	0.0000

U.S. EPA (1999). Screening Level Ecological Risk Assessment Protocol for Hazardous Waste Combustion Facilities. EPA 530-D-99-001A, August. U.S. EPA (1993). Wildlife Exposure Factors Handbook, Volume I. EPA/600/R-93/187a, December.

ESS Group, Inc. J:\B345 Eco Avian Calcs.xis [Hawk]

APPENDIX D TABLE D-3

CHEMICAL PROPERTIES AND INTERMEDIATE CALCULATIONS AVIAN RECEPTORS

Former McCoy Field Wetland Area New Bedford, Massachusetts

Constituent	Soil/Sediment Concentration	Estimated Surface Water Concentration	Bioavailability from Soil ¹	n-Octanol/Water Partition Coefficient	Sediment/Water Partition Coefficient ²	Soil-to-Soil Invertebrate Bioconcentration Factor	Soil-to-Plant Bioconcentration Factor	Mammal Biotransfer Factor	Shrew Food Ingestion Rate ³	Shrew Soil Ingestion Rate ³	Shrew Surface Water Ingestion Rate ³
	C _{soil}	C _{sw}	BA _{soil}	K _{ow}	K _D	BCF _{SSI}	BCF _r	BA _{mammal}	IR _{food-shrew}	IR _{soil-shrew}	IR _{SW-shrew}
	(mg/kg)	(mg/L)	(unitless)	(L/kg)	(L/kg)	(mg/kg WW)/ (mg/kg DW soil)	(mg/kg DW)/ (mg/kg DW soil)	(day/kg WW tissue)	(kg/dy)	(kg/dy)	(L/dy)
PCBs (as Aroclor 1254)	2.09	6.67E-07	1	1.07E+06 [7]		1.13E+00 [9]	1.27E-02 [11]	2.69E-02 [4]		0.00022	0.0023
Acenaphthene	0.191	2.56E-05	1	8.32E+03 [8]		5.00E-02 [10]	2.10E-01 [11]	2.09E-04 [4]	0.0075	0.00022	0.0023
Anthracene	0.221	9.15E-06	1	3.47E+04 [8]		5.00E-02 [10]	9.20E-02 [11]	8.71E-04 [4]		0.00022	0.0023
Benzo(a)anthracene	0.401	1.25E-06	1	8.71E+05 [8]		3.00E-02 [9]	1.43E-02 [11]	2.19E-02 [4]	0.0075	0.00022	0.0023
Benzo(b)fluoranthene	0.274	1.20E-06	1	6.31E+05 [8]		7.00E-02 [9]	1.72E-02 [11]	1.58E-02 [4]	0.0075	0.00022	0.0023
Benzo(k)fluoranthene	0.218	5.74E-07	1	1.00E+06 [8]		8.00E-02 [9]	1.32E-02 [11]	2.51E-02 [4]	0.0075	0.00022	0.0023
Benzo(g,h,i)perylene	0.213	2.18E-07	1	3.16E+06 [8]		5.00E-02 [10]	6.78E-03 [11]	7.94E-02 [4]	0.0075	0.00022	0.0023
Benzo(a)pyrene	0.395	9.60E-07	1	1.10E+06 [8]		7.00E-02 [9]	1.25E-02 [11]	2.75E-02 [4]	0.0075	0.00022	0.0023
Chrysene	0.377	1.47E-06	1	3.09E+05 [8]		4.00E-02 [9]	2.60E-02 [11]	7.76E-03 [4]	0.0075	0.00022	0.0023
Fluoranthene	0.329	3.77E-06	1	1.66E+05 [8]		5.00E-02 [10]	3.72E-02 [11]	4.17E-03 [4]	0.0075	0.00022	0.0023
Fluorene	0.203	1.66E-05	1	1.51E+04 [8]	Marie .	5.00E-02 [10]	1.49E-01 [11]	3.80E-04 [4]	0.0075	0.00022	0.0023
Indeno(1,2,3-cd)pyrene	0.208	8.28E-08	1	1.00E+07 [8]	**	8.00E-02 [20]	3.48E-03 [11]	2.51E-01 [4]	0.0075	0.00022	0.0023
Phenanthrene	0.446	1.74E-05	1	3.72E+04 [8]		5.00E-02 [10]	8.84E-02 [11]	9.33E-04 [4]	0.0075	0.00022	0.0023
Pyrene	0.623	7.72E-06	1	1.51E+05 [8]		5.00E-02 [10]	3.93E-02 [11]	3.80E-03 [4]	0.0075	0.00022	0.0023
Barium	83	2.63E-02	0.07	-	3.16E+02	1.00E-02 [5]	1.50E-01 [9]	9.43E-03 [12]	0.0075	0.00022	
Cadmium	1.17	5.86E-05	0.01		2,00E+03	9.60E-01 [9]	3.64E-01 [9]	7.54E-03 [12]	0.0075	0.00022	0.0023
Chromium	13	1.72E-05	0.005	-	7.54E+04	1.00E-02 [9]	7.50E-03 [9]		0.0075		0.0023
Lead	138	3.47E-04	0.15		3.98E+04	3.00E-02 [9]	4.50E-02 [9]	3.45E-01 [12] 1.88E-02 [12]	0.0075	0.00022	0.0023
Mercury	0.18	2.27E-06	0.07	-	7.94E+03	4.00E-02 [6,9]	3.75E-02 [6,9]		0.0075	0.00022	0.0023
Selenium	0.92	2.31E-05	0.44	-	3.98E+03	1.00E-02 [5]	1.60E-02 [9]	3.26E-01 [12] 1.43E-01 [12]	0.0075	0.00022 0.00022	0.0023 0.0023

mg = milligrams.

kg = kilograms.

L = liters. dy = day

DW = dry weight.

WW = wet (fresh) weight.

- 1. Assumed value for organics; see associated table for metal references.
- 2. U.S. EPA (1999a) Partition Coefficients for Metals in Surface Water, Soil, and Waste (draft). June 22.
- 4. For organic constituents, log BA_{mammal} = -7.6 + log K_{ow} , (U.S. EPA 1999)
- 3. Calculated as 0.5 kg/kgBW-dy x 0.015 kg body weight (for food); 0.0145 kg/kgBW-dy x 0.015 kg (for soil); 0.151 L/kgW-dy x 0.015 kg (for surface water) (U.S. EPA 1999).
- 5. Reportedly does not bioaccumulate; lowest value of assessed metals applied [U.S. EPA (2005b) http://www.epa.gov/region5/superfund/ecology/html/toxprofiles.htm].
- 6. Value for mercuric chloride applied.
- 7. U.S. EPA (2004a). Water9 Version 2.0.0 Database.
- 8. TPHCWG (1998). Composition of Petroleum Mixtures. May.
- 9. U.S. EPA (1999). Screening Level Ecological Risk Assessment Protocol for Hazardous Waste Combustion Facilities. EPA 530-D-99-001A, August.
- 10. No value available; midpoint of available values for PAHs applied.
- 11. Calculated from the following regression equation: log BCF = $1.588 0.578 \times Log K_{ow}$ per U.S. EPA (1999).
- 12. For metals, BA_{mammal} values were back-calculated from BCF values presented in U.S. EPA (1999) Table D-3 for short-tailed shrew, using a soil ingestion rate of 0.0145 kg/kg-dy and a body weight of 0.015 kg.

Appendix E Mammalian Risk Characterization Calculations

APPENDIX E TABLE E-1 RISK CHARACTERIZATION CALCULATIONS SHORT-TAILED SHREW Former McCoy Field Wetland Area New Bedford, Massachusetts

Assuming 10% of food intake and a 71% food moisture content (68% for invertebrates; 88% for vegetation).

Intake_{soli} =

$$\begin{split} &C_{soli} \times IR_{soli} \times BA_{soli/food} \times A/FA \\ &\left[(C_{food1} \times F_1) + (C_{food2} \times F_2) \right] \times IR_{food} \times BA_{soli/food} \times A/FA \end{split}$$
Intake_{food} =

Cwater x IRwater x A/FA Intake_{water} =

Intake_{total} = Intake_{soll +} Intake_{food} + Intake_{wates}

Intake_{total}/TRV-Low HI-High = HI-Low = Intake_{total}/TRV-High

HI-High = HI-Low = High estimate of hazard index (unitless) Calculated Low estimate of hazard index (unitless) Calculated Constituent-specific TRV-Low = Toxicity Reference Value - Low (mg/kgBW-dy) See associated table TRV-High = Toxicity Reference Value - High (mg/kgBW-dy) Constituent-specific See associated table Intake_{total} = Total intake of constituent from all pathways (mg/kgBW-dy) Calculated Intake of constituent from soil ingestion (mg/kgBW-dy) Intake_{soil} = Calculated Intake_{food} = Intake of constituent from food ingestion (mg/kgBW-dy) Calculated Intake of constituent from water ingestion (mg/kgBW-dy) Intake_{water} = Calculated Soil constituent concentration (mg/kgDW) Constituent-specific $C_{soll} =$

Soll ingestion rate (kgDW/kgBW-day) $IR_{soll} =$ Bioavailability from soil and food (unitless)

BA_{soll/food} = Food constituent concentration in ith food type (mg/kgWW)

Fraction of diet for ith food (unitless)

Total food ingestion rate (kgWW/kgBW-day) Water constituent concentration (mg/L) Water ingestion rate (L/kgBW-day) On-site foraging area (acres)

0.17 vegetation 0.5 Constituent-specific 0.151 Total foraging area for organism (acres) 0.9

C_{soll} x BCF_{ssl}

Soil-to-soil invertebrate bioaccumulation factor [(mg/kg WW)/(mg/kgDW soil)] BCF_{ssl} =

where:

C_{soli} x BCF_r x 0.12

 $BCF_r =$ Plant-soil bioconcentration factor [(mg/kgDW)/(mg/kgDW soil)

0.12 =

Dry weight (DW) to wet weight (WW) conversion factor (unitless) (assumed vegetation is 88% moisture).

<u>Value</u>

0.0145

0.83

Constituent-specific

Constituent-specific

Source

See associated table

U.S. EPA (1993)

U.S. EPA (1993)

U.S. EPA (1999)

U.S. EPA (1993)

Site estimate

Invertebrates U.S. EPA (1993)

[A/FA]= 1 or less

Constituent	C _{soil}	BA _{soil/food}	IR _{soll}	Soil-to-Soil Invertebrate BCF	C _{food(invert)}	F _{food(inverts)}	BCF _r	0.12	C _{food(veg)}	F _{food(veg)}	IR _{food}	C _{water}	IR _{water}	A/FA	Intake _{soll}	Intake _{food}	Intake _{water}	Intake _{total}	TRV-Low	HI-High	TRV-High	HI-Low
	(mg/kg)	(unitless)	(kg/kgBW-dy)	(mg/kg WW)/ (mg/kg DW soil)	(mg/kg WW)	(kg/kgBW-dy)	(mg/kg WW)/ (mg/kg DW soll)	(unitiess)	(mg/kg WW)	(kg/kgBW-dy)	(kg/kgBW-dy)	(mg/L)	(L/kgBW-day)	(unitiess)	(mg/kgBW-dy)	(mg/kgBW-dy)	(mg/kgBW-dy)	(mg/kgBW-dy)	(mg/kgBW-dy)	(unitiess)	(mg/kgBW-dy)	(unitless)
PCBs (as Aroclor 1254)	2.09	_ 1	0.0145	1,13	2.36E+00	0.83	1.27E-02	0.12	2,20E-05	0.17	0.5	6.67E-07	0.151	1	3.03E-02	9.80E-01	1.01E-07	1.01E+00	0.36	3	1,28	0,8
Acenaphthene	0.191	1	0.0145	0.05	9.55E-03	0.83	2.10E-01	0.12	3.65E-04	0.17	0.5	2.56E-05	0.151	1	2.77E-03	3.99E-03	3.86E-06	6.77E-03	17.5	0.0004	17.5	0.0004
Anthracene	0.221	1	0.0145	0.05	1.11E-02	0.83	9.20E-02	0.12	1.60E-04	0.17	0.5	9.15E-06	0.151	1	3.20E-03	4.60E-03	1.38E-06	7.81E-03	100	80000.0	100	0.00008
Benzo(a)anthracene	0.401	1	0.0145	0.03	1.20E-02	0.83	1.43E-02	0.12	2.48E-05	0.17	0.5	1.25E-06	0.151	1	5.81E-03	4.99E-03	1.89E-07	1.08E-02	0.167	0.06	0.167	0.06
Benzo(b)fluoranthene	0.274	1	0.0145	0.07	1.92E-02	0.83	1.72E-02	0.12	2.99E-05	0.17	0.5	1.20E-06	0.151	1	3.97E-03	7.96E-03	1.80E-07	1.19E-02	4	0.003	4	0.003
Benzo(k)fluoranthene	0.218	1	0.0145	0.08	1.74E-02	0.83	1.32E-02	0.12	2,29E-05	0.17	0.5	5.74E-07	0.151	1	3.16E-03	7.24E-03	8.66E-08	1.04E-02	7,2	0.001	7.2	0.001
Benzo(g,h,i)perylene	0.213	1	0.0145	0.05	1.07E-02	0.83	6.78E-03	0.12	1.18E-05	0.17	0.5	2.18E-07	0.151	1	3.09E-03	4.42E-03	3.29E-08	7.51E-03	7.2	0.001	7.2	0.001
Benzo(a)pyrene	0.395	1	0.0145	0.07	2.77E-02	0.83	1.25E-02	0.12	2.17E-05	0.17	0.5	9.60E-07	0.151	1	5.73E-03	1.15E-02	1.45E-07	1.72E-02	1.31	0.01	32.8	0.0005
Chrysene	0.377	1	0.0145	0.04	1.51E-02	0,83	2.60E-02	0.12	4.52E-05	0.17	0.5	1.47E-06	0.151	1	5.47E-03	6.26E-03	2.23E-07	1.17E-02	0.17	0.07	0.17	0.07
Fluoranthene	0.329	1	0.0145	0.05	1.65E-02	0.83	3.72E-02	0.12	6.48E-05	0.17	0.5	3.77E-06	0.151	1	4.77E-03	6.83E-03	5.69E-07	1.16E-02	12.5	0.0009	12,5	0.0009
Fluorene	0.203	1	0.0145	0.05	1.02E-02	0.83	1.49E-01	0.12	2.59E-04	0.17	0.5	1.66E-05	0.151	1	2.94E-03	4.23E-03	2.50E-06	7.18E-03	12.5	0.0006	12.5	0.0006
Indeno(1,2,3-cd)pyrene	0.208	1	0.0145	0.08	1.66E-02	0.83	3.48E-03	0.12	6.06E-06	0.17	0.5	8.28E-08	0.151	1	3,02E-03	6.91E-03	1.25E-08	9.92E-03	7.2	0.001	7.2	0.001
Phenanthrene	0.446	1	0.0145	0.05	2.23E-02	0.83	8.84E-02	0.12	1.54E-04	0.17	0.5	1.74E-05	0.151	1	6.47E-03	9.27E-03	2.63E-06	1.57E-02	100	0.0002	100	0.0002
Pyrene	0.623	1	0.0145	0.05	3.12E-02	0.83	3.93E-02	0.12	6.83E-05	0.17	0.5	7.72E-06	0.151	1	9.03E-03	1.29E-02	1.17E-06	2.20E-02	7.5	0.003	7.5	0.003
Barlum	83	0.07	0.0145	0.01	8.30E-01	0.83	1.50E-01	0.12	2.61E-04	0.17	0.5	2.63E-02	0.151	1	8,42E-02	2.41E-02	3.97E-03	1.12E-01	2.8	0.04	10.5	0.01
Cadmium	1.17	0.01	0.0145	0.96	1.12E+00	0.83	3.64E-01	0.12	6.33E-04	0.17	0.5	5.86E-05	0.151	1	1.70E-04	4.66E-03	8.86E-06	4.84E-03	0.51	0.009	5.1	0.0009
Chromium	13	0.005	0.0145	0.01	1.30E-01	0.83	7.50E-03	0.12	1.31E-05	0.17	0.5	1.72E-05	0.151	1	9.43E-04	2,70E-04	2.60E-06	1.21E-03	2.4	0.0005	2.4	0.0005
Lead	138	0.12	0.0145	0.03	4.14E+00	0.83	4.50E-02	0.12	7.83E-05	0.17	0.5	3.47E-04	0.151	1	2.40E-01	2.06E-01	5.23E-05	4.46E-01	4.22	0.1	241	0.002
Mercury	0.18	0.07	0.0145	0.04	7.20E-03	0.83	3.75E-02	0.12	6.53E-05	0.17	0.5	2.27E-06	0.151	1	1.83E-04	2.10E-04	3.42E-07	3.93E-04	0.69	0.0006	4	0.0001
Selenium	0.92	0.44	0.0145	0.01	9.20E-03	0.83	1.60E-02	0.12	2.78E-05	0.17	0.5	2.31E-05	0.151	1	5.87E-03	1.68E-03	3.49E-06	7.55E-03	0.076	0.1	1.2	0.006
																			HI =	3	HI =	1

U.S. EPA (1999). Screening Level Ecological Risk Assessment Protocol for Hazardous Waste Combustion Facilities. EPA 530-D-99-001A, August. U.S. EPA (1993). Wildlife Exposure Factors Handbook, Volume I. EPA/600/R-93/187a, December.

APPENDIX E TABLE E-2 RISK CHARACTERIZATION CALCULATIONS RACCOON Former McCoy Field Wetland Area New Bedford, Massachusetts

Intake_{soit} = Intake_{food} =

C_{soil} × IR_{soil} × BA_{soil/food} × A/FA
[(C_{food1} × F₁) + (C_{food2} × F₂) + (C_{food3} × F₃)] × IR_{food} × BA_{soil/food} × A/FA
C_{wster} × IR_{wster} × A/FA
Intake_{soil} + Intake_{food} + Intake_{wster}

Intake_{water} =

Intake_{total} =

HI-High =

Intake_{total}/TRV-Low Intake_{total}/TRV-High HI-Low =

<u>Value</u> Calculated Calculated HI-High = HI-Low = High estimate of hazard index (unitiess)
Low estimate of hazard index (unitiess) Toxicity Reference Value - low (mg/kgBW-dy)
Toxicity Reference Value - High (mg/kgBW-dy) Constituent-specific See associated table TRV-High = Constituent-specific Intake_{total} = Intake_{food} = Intake_{water} = Total intake of constituent from all pathways (mg/kgBW-dy) Calculated Calculated

Intake of constituent from food Ingestion (mg/kgBW-dy)

Intake of constituent from water Ingestion (mg/kgBW-dy) Calculated Soil constituent concentration (mg/kgDW) Constituent-specific

C_{soli} = IR_{soli} = Soll Ingestion rate (kgDW/kgBW-day) 0.0058 Assume 10% of food ingestion rate; 80% food moisture (68% for invertebrates and mammals; 88% for vegetation). Bioavallability from soil and food (unitless) Constituent-specific See associated table

Source

 $BA_{solfood} =$ Constituent concentration in Ith food (mg/kg WW) Calculated

U.S. EPA (1993) U.S. EPA (1993) Fraction of diet for lth food (unitless) $F_{food1} =$ 0.58 vegetation 0.17 Invertebrates 0.25 U.S. EPA (1993) mammals

Total food ingestion rate (kgWW/kgBW-day) 0.29 Calculated as IR = 0.0687 (weight)^{0.822}, at a 5.8 kg body weight. Water constituent concentration (mg/L) Constituent-specific

Water Ingestion rate (L/kgBW-day) 0.08 U.S. EPA (1993) On-site foraging area (acres) Site estimate U.S. EPA (1993) Total foraging area for organism (acres)

C_{sot} x BCF_r x 0.12

 $BCF_r = Plant-soil bioconcentration factor [(mg/kg DW)/(mg/kg soil)]$

Dry weight (DW) to wet weight (WW) conversion factor (unitless)

 $\begin{array}{ll} C_{sol} \times BCF_{sal} \\ BCF = & Soil \ to \ soll \ invertebrate \ bioaccumulation \ factor \ [(mg/kg \ WW)/(mg/kg \ soil)] \end{array}$

 $\begin{aligned} & \text{BA}_{\text{mammal}} \left[\left(C_{\text{invert}} \times \text{BA}_{\text{soil/plant}} \times IR_{\text{tood-shrew}} \right) + \left(C_{\text{soil}} \times \text{BA}_{\text{soil/flood}} \times IR_{\text{soil-shrew}} \right) + \left(C_{\text{SW}} \times IR_{\text{SW-shrew}} \right) \right] \\ & \text{BA}_{\text{mammal}} = & \text{Mammal blotransfer factor (dy/kg)} \end{aligned}$

where: Shrew consumption rate of food (kg/dy)

Shrew consumption rate of soil (kg/dy)

Shrew consumption rate of surface water (L/dy)

[A/FA]= 1 or less

Constituent	C _{soli}	BA _{soll/food}	IR _{soll}	BCF,	0.12	C _{food(veg)}	F _{food(veg)}	BCF _{ssi}	C _{food (invert)}	F _{food(Invert)}	BA _{mammal}	IR _{food-shrew}	IR _{soll-akrew}	IR _{SW-shrew}	C _{food (mammel)}	F _{food(mammal)}	IR _{food}	Csw	IR _{water}	A/FA	Intake _{soli}	Intake _{food}	Intake	Intaketotal	TRV-Low	HI-High	TRV-High	HI-Low
		1 1		(mg/kg FW)/		1		(mg/kgWW)/						}	1								- STALLE					
ł	(mg/ka)	(unitiess)	(ka/kaBW-dv)	(mg/kg DW	(unitiess)	(ma/ka WW)	(ka/kaBW-dv)	(mg/kgDW soll)	(mn/knWW)	(ka/kaBW-dv)	(day/kgWW tissue)	(ka/dv)	(ka/du)	(L/dv)	(ma/kaww)	(kg/kgBW-dy)	(ka/kaBW-du)	(ma/L)	fi /baBW.day)	(unlikens)	Committee Blille abox	(mg/kgBW-dy)	form the BML do	(man 15 mm) 1 day	6 11 mur dia	ć		C191
PCBs (as Aroclor 1254)	2.09	1	0.0058	1,27E-02	0.12	3.18F-03	0.58	1.13	2.36F+00	0.17	2.69F+02	0.0075	0.0002	0.0023	4 89F-04	0.25	0.29	6.67E-07	0.00	0.010	1 255.04	1 215-02	(Mg/kgbw-gy)	(mg/xgsw-gy)	(mg/xgbW-gy)	(unitless)	(mg/kgBW-dy)	
Acenaphthene	0.191	1 1	0.0058	2.10E-01	0.12	4.81E-03	0.58	0.05	9.55E-03	0.17	2.09F-04	0.0075	0.0002	0.0023	2.37F-08	0.25	0.29	2 56E-05	0.08	0.010	1 145-05	1 275-05	2 105.00	1.335-03	17 5	0.004	17.5	0.001
Anthracene	0.221	1	0.0058	9.20E-02	0.12	2.44E-03	D.58	0.05	1.11E-02	0.17	8.71F-04	0.0075	0.0002	0.0023	1.14F-07	0.25	0.29	9.15F-06	0.08	0.010	1325-05	D 845-06	7 515-00	2,405-05	17.3	0.000001	17.5	0.0000001
Benzo(a)anthracene	0.401	1	0.0058	1.43E-02	0.12	6.87E-04	0.58	0.03	1.20E-02	0.17	2.19F-02	0.0075	0.0002	0.0023	3.88F-06	0.25	0.29	1 25F-06	0.08	0.010	2.025-05	7.31E-06	1.035-00	2.31E-03	0.167	0.0000002	0.167	0.0000
Benzo(b)fluoranthene	0.274	1	0.0058	1.72E-02	0.12	5,66E-04	0.58	0.07	1.92E-02	0.17	1.58F-02	0.0075	0.0002	0.0023	3,22F-06	0.25	0.29	1.20F-06	0.08	0.010	1 645-05	1.075-05	Q 81E-10	3.13E-05	0.107	0.00002	0,107	0.00002
Benzo(k)fluoranthene	0.218	1	0.0058	1.32E-02	0.12	3,45E-04	0.58	0.08	1.74E-02	0.17	2.51E-02	0.0075	0.0002	0.0023	4.48F-06	0.25	0.29	5 74F-07	0.08	0.010	1 30F-05	9.465-06	4.71F-10	2.716-05	72	0.000007	77	0.000007
Benzo(g,h,l)perylene	0.213	1	0.0058	6.78E-03	0.12	1.73E-04	0.58	0.05	1.07E-02	0.17	7.94E-02	0.0075	0.0002	0.0023	1.00E-05	0.25	0.29	2.18F-07	0.08	0.010	1 27F-05	5.72F-06	1 79F-10	1 85E-05	72	0.000003	7.2	0.000003
Benzo(a)pyrene	0.395	1	0.0058	1.25E-02	0.12	5.92E-04	0.58	0.07	2.77E-02	0.17	2.75E-02	0.0075	0.0002	0.0023	8.08E-06	0.25	0.29	9.60E-07	0.08	0.010	2.36F-05	1.51F-05	7 88F-10	3 87F-05	131	0.000003	32 B	0.000001
Chrysene	0.377	1	0.0058	2.60E-02	0.12	1.18E-03	0.58	0.04	1.51E-02	0.17	7.76E-03	0.0075	0.0002	0.0023	1.51E-06	0.25	0.29	1.47E-06	0.08	0.010	2.25F-05	9.70F-06	1.21F-09	3.07E-05	0 17	0,00003	0 17	0.0002
luoranthene	0.329	1	0.0058	3.72E-02	0.12	1.47E-03	0.58	0.05	1.65E-02	0.17	4.17E-03	0.0075	0.0002	0.0023	8.13E-07	0.25	0.29	3.77F-06	0.08	0.010	1.97F-05	1.09F-05	3 09F-09	3.05E-05	12.5	0.0002	12.5	0.00002
luorene	0.203	1	0.0058	1.49E-01	0.12	3.62E-03	0.58	0.05	1.02E-02	0.17	3.80E-04	0.0075	0.0002	0.0023	4.57E-08	0.25	0.29	1.66F-05	0.08	0.010	1.21F-05	1 14F-05	1 36F-08	2 365-05	12.5	0.000002	12.5	0.000002
Indeno(1,2,3-cd)pyrene	0.208	1	0.0058	3.48E-03	0.12	8.69E-05	0.58	0.08	1.66E-02	0.17	2.51E-01	0.0075	0.0002	0.0023	4.27E-05	0.25	0.29	8.28F-08	0.08	0.010	1.24F=05	8 64F-06	6 70F-11	2.11E-05	7.2	0.000002	7 2	0.000002
henanthrene	0.446	1	0.0058	8.84E-02	0.12	4.73E-03	0.58	0.05	2.23E-02	0.17	9.33E-04	0.0075	0.0002	0.0023	2.47E-07	0.25	0.29	1.74F-05	0.08	0.010	2 67F-05	1 95F-05	1.43F-08	4.62E-05	100	0.0000005	100	0.0000005
Pyrene	0.623	1	0.0058	3.93E-02	0.12	2.94E-03	0.58	0.05	3.12E-02	0.17	3.80E-03	0.0075	0.0002	0.0023	1.40E-06	0.25	0.29	7.72E-06	0.08	0.010	3.72F-05	2.09F-05	6 33F-09	5.82F-05	7.5	2.0000003	7.5	0.000008
Barlum	83	0.07	0.0058	1.50E-01	0.12	1.49E+00	0.58	0.01	8.30E-01	0.17	9.43E-03	0.0075	0.0002	0.0023	1.66E-05	0.25	0.29	2.63F-02	0.08	0.010	3.47F-04	2.11F-04	2.16F-05	5.80E-04	28	0.000000	10.5	0.00006
Cadmium	1,17	0.01	0.0058	3.64E-01	0.12	5.11E-02	0.58	0.96	1.12E+0D	0.17	7.54E-03	0.0075	0.0002	0.0023	6.55E-07	0.25	0.29	5.86F-05	0.08	0.010	6.99E-07	6.59F-06	4 RIF-OR	7 34F-06	0.10	0.0002	51	0.000001
Chromium (total)	13	0.005	0.0058	7.50E-03	0.12	1.17E-02	0.58	0.01	1.30E-01	0.17	3.45E-01	0.0075	0.0002	0.0023	6.57E-06	0.25	0.29	1.72F-05	0.08	0.010	3.89F-06	4.32F-07	1.41F-08	4 33E-06	24	0.00007	74	0.000002
ead	138	0.12	0.0058	4.50E-02	0.12	7.45E-01	0.58	0.03	4.14E+00	0.17	1.88E-D2	0.0075	0.0002	0.0023	1.38E-04	0.25	0.29	3.47E-04	0.08	0.010	9.90F-04	4.07F-04	2.84F-07	1.40F-03	4 22	0.00002	241	0.000002
Mercury	0.18	0.07	0.0058	3.75E-02	0.12	8.10E-04	0.58	0.04	7,20E-03	0.17	3.26E-01	0.0075	0.0002	0.0023	2.13E-06	0.25	0.29	2.27F-06	0.08	0.010	7 53F-07	3 54F-07	1.86F-09	1 11F-06	0.60	0.0003	4 4 A	0.0000003
Selenium	0.92	0.44	0.0058	1.60E-02	0.12	1.77E-03	0.58	0.01	9.20E-03	0.17	1.43E-01	0.0075	0.0002	0,0023	1.69E-05	0.25	0.29	2.31E-05	0.08	0.010	2.42E-05	3.41E-05	1.90E-08	2.76E-05	0.05	0.00004	1.21	0.000002
															1						27.12.00	J. 122 00	2,501 00		HI =	0.005	HI =	0.002

U.S. EPA (1999). Screening Level Ecological Risk Assessment Protocol for Hazardous Waste Combustion Facilities. EPA 530-D-99-001A, August. U.S. EPA (1993). Wildlife Exposure Factors Handbook, Volume I. EPA/600/R-93/187a, December.

ESS Group, Inc. J:\B345 Eco Mammal Calcs.xls [Raccoon]

APPENDIX E TABLE E-3

CHEMICAL PROPERTIES AND INTERMEDIATE CALCULATIONS

MAMMALIAN RECEPTORS

Former McCoy Field Wetland Area New Bedford, Massachusetts

Constituent	Soil/Sediment Concentration	Estimated Surface Water Concentration	Bioavailability from Soil and Food ¹	n-Octanol/Water Partition Coefficient	Sediment/Water Partition Coefficient ²	Soil-to-Soil Invertebrate Bioconcentration Factor	Soil-to-Plant Bioconcentration Factor	Mammal Biotransfer Factor	Shrew Food Ingestion Rate ³	Shrew Soil Ingestion Rate ³	Shrew Surface Water Ingestion Rate ³
	C _{soil}	C _{SW}	BA _{soll/food}	K _{ow}	K _D	BCF _{SSI}	BCF _r	BA_{mammal}	IR _{food-shrew}	IR _{soil-shrew}	IR _{SW-shrew}
	(mg/kg)	(mg/L)	(unitless)	(L/kg)	(L/kg)	(mg/kg WW)/ (mg/kg DWsoil)	(mg/kg DW)/ (mg/kg DWsoil)	(day/kg FW tissue)	(kg/dy)	(kg/dy)	(L/dy)
PCBs (as Aroclor 1254)	2.09	6.67E-07	1	1.07E+06 [7]		1.13E+00 [9]	1.27E-02 [11]	2.69E-02 [4]	0.0075	0.00022	0.0023
Acenaphthene	0.191	2.56E-05	1	8.32E+03 [8]		5.00E-02 [10]	2.10E-01 [11]	2.09E-04 [4]	0.0075	0.00022	0.0023
Anthracene	0.221	9.15E-06	1	3.47E+04 [8]		5.00E-02 [10]	9.20E-02 [11]	8.71E-04 [4]	0.0075	0.00022	0.0023
Benzo(a)anthracene	0.401	1.25E-06	1	8.71E+05 [8]		3.00E-02 [9]	1.43E-02 [11]	2.19E-02 [4]	0.0075	0.00022	0.0023
Benzo(b)fluoranthene	0.274	1.20E-06	1	6.31E+05 [8]		7.00E-02 [9]	1.72E-02 [11]	1.58E-02 [4]	0.0075	0.00022	0.0023
Benzo(k)fluoranthene	0.218	5.74E-07	1	1.00E+06 [8]		8.00E-02 [9]	1.32E-02 [11]	2.51E-02 [4]	0.0075	0.00022	0.0023
Benzo(g,h,i)perylene	0.213	2.18E-07	1	3.16E+06 [8]		5.00E-02 [10]	6.78E-03 [11]	7.94E-02 [4]	0.0075	0.00022	0.0023
Benzo(a)pyrene	0.395	9.60E-07	1	1.10E+06 [8]		7.00E-02 [9]	1.25E-02 [11]	2.75E-02 [4]	0.0075	0.00022	0.0023
Chrysene	0.377	1.47E-06	1	3.09E+05 [8]		4.00E-02 [9]	2.60E-02 [11]	7.76E-03 [4]	0.0075	0.00022	0.0023
Fluoranthene	0.329	3.77E-06	1	1.66E+05 [8]		5.00E-02 [10]	3.72E-02 [11]	4.17E-03 [4]	0.0075	0.00022	0.0023
Fluorene	0.203	1.66E-05	1	1.51E+04 [8]		5.00E-02 [10]	1.49E-01 [11]	3.80E-04 [4]	0.0075	0.00022	0.0023
Indeno(1,2,3-cd)pyrene	0.208	8.28E-08	1	1.00E+07 [8]		8.00E-02 [9]	3.48E-03 [11]	2.51E-01 [4]	0.0075	0.00022	0.0023
Phenanthrene	0.446	1.74E-05	1	3.72E+04 [8]	***	5.00E-02 [10]	8.84E-02 [11]	9.33E-04 [4]	0.0075	0.00022	0.0023
Pyrene	0.623	7.72E-06	1	1.51E+05 [8]		5.00E-02 [10]	3.93E-02 [11]	3.80E-03 [4]	0.0075	0.00022	0.0023
Barium	83	2.63E-02	0.07	-	3.16E+02	1.00E-02 [5]	1.50E-01 [9]	9.43E-03 [12]	0.0075	0.00022	0.0023
Cadmium	1.17	5.86E-05	0.01	-	2.00E+03	9.60E-01 [9]	3.64E-01 [9]	7.54E-03 [12]	0.0075	0.00022	0.0023
Chromium	13	1.72E-05	0.005	-	7.54E+04	1.00E-02 [9]	7.50E-03 [9]	3.45E-01 [12]	0.0075	0.00022	0.0023
Lead	138	3.47E-04	0.15	**	3.98E+04	3.00E-02 [9]	4.50E-02 [9]	1.88E-02 [12]	0.0075	0.00022	0.0023
Mercury	0.18	2.27E-06	0.07	-	7.94E+03	4.00E-02 [6,9]	3.75E-02 [6,9]	3.26E-01 [12]	0.0075	0.00022	0.0023
Selenium	0.92	2.31E-05	0.44	-	3.98E+03	1.00E-02 [5]	1.60E-02 [9]	1.43E-01 [12]	0.0075	0.00022	0.0023

mg = milligrams.

kg = kilograms.

L = liters.

dy = days. DW = dry weight.

WW = wet (fresh) weight.

- 1. Assumed values for organics; see associated table for metal references.
- 2. U.S. EPA (1999a) Partition Coefficients for Metals in Surface Water, Soil, and Waste (draft). June 22.
- 3. Calculated as 0.5 kg/kgBW-dy x 0.015 kg body weight (for worms); 0.0145 kg/kgBW-dy x 0.015 kg (for soil); 0.151 L/kgBW-dy x 0.015 kg (for surface water).
- 4. For organic constituents, log $BA_{mammal} = -7.6 + log K_{ow}$. (U.S.EPA 1999).
- 3. Calculated as 0.5 kg/kgBW-dy x 0.015 kg body weight (for worms); 0.0145 kg/kgBW-dy x 0.015 kg (for soil); 0.151 L/kgBW-dy x 0.015 kg (for surface water).
- 5. Reportedly does not bioaccumulate; lowest value of assessed metals applied [U.S. EPA (2005b) http://www.epa.gov/region5/superfund/ecology/html/toxprofiles.htm].
- 6. Value for mercuric chloride applied.
- 7. U.S. EPA (2004a). Water9 Version 2.0.0 Database.
- 8. TPHCWG (1998). Composition of Petroleum Mixtures. May.
- 9. U.S. EPA (1999). Screening Level Ecological Risk Assessment Protocol for Hazardous Waste Combustion Facilities. EPA 530-D-99-001A, August.
- 10. No value available; midpoint of available values for PAHs applied.
- 11. Calculated from the following regression equation: log BCF = 1.588 0.578 x Log K_{OW} per U.S. EPA (1999).
- 12. For metals, BA_{mammal} values were back-calculated from BCF values presented in U.S. EPA (1999), Table D-3 for short-tailed shrew, using a soil ingestion rate of 0.0145 kg/kg-dy and a body weight of 0.015 kg.